Pregunta
upstudy study bank question image url

Differentiate the function \( B(x)=\frac{\frac{3}{\sin x}-3 \sin x}{4 \cos x} \)

Ask by Luna Vargas. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( B(x) \) is \( B′(x) = –\frac{3}{4} \csc^{2}x \).

Solución

We are given the function   B(x) = [3/ sin x – 3 sin x] / [4 cos x]. Step 1. Simplify the Function Factor out the common factor 3 in the numerator:   B(x) = [3(1/sin x – sin x)] / [4 cos x]. Notice that   1/sin x – sin x = (1 – sin²x) / sin x. Using the Pythagorean identity, 1 – sin²x = cos²x, we have   1/sin x – sin x = cos²x / sin x. Thus, the function becomes   B(x) = [3(cos²x/ sin x)] / [4 cos x] = (3 cos²x) / (4 sin x cos x). Cancel one factor of cos x in the numerator with the cos x in the denominator:   B(x) = (3 cos x) / (4 sin x). Recognize that cos x/sin x = cot x, so   B(x) = (3/4) cot x. Step 2. Differentiate B(x) We now differentiate B(x) = (3/4) cot x. Recall that the derivative of cot x is   d/dx [cot x] = –csc²x. Thus,   B′(x) = (3/4) · d/dx [cot x] = (3/4)(–csc²x) = –(3/4) csc²x. Final Answer The derivative of B(x) is   B′(x) = –(3/4) csc²x.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To differentiate the function \( B(x)=\frac{\frac{3}{\sin x}-3 \sin x}{4 \cos x} \), we apply the quotient rule. The quotient rule states that if you have a function \( \frac{u}{v} \), then its derivative is given by: \[ \frac{d}{dx}\left(\frac{u}{v}\right) = \frac{u'v - uv'}{v^2} \] Here, let: - \( u = \frac{3}{\sin x} - 3 \sin x \) - \( v = 4 \cos x \) First, we need to differentiate \( u \) and \( v \). 1. **Finding \( u' \)**: To differentiate \( u \), we use the derivative rules for \( \frac{3}{\sin x} \) and \( -3 \sin x \): \[ u' = \frac{d}{dx}\left(\frac{3}{\sin x}\right) - 3 \frac{d}{dx}(\sin x) \] \[ = -\frac{3 \cos x}{\sin^2 x} - 3 \cos x \] \[ = -\frac{3 \cos x + 3 \cos x \sin^2 x}{\sin^2 x} \] \[ = -\frac{3 \cos x(1 + \sin^2 x)}{\sin^2 x} \] 2. **Finding \( v' \)**: \[ v' = \frac{d}{dx}(4 \cos x) = -4 \sin x \] 3. **Applying the Quotient Rule**: Now substituting \( u, v, u', v' \) into the quotient formula: \[ B'(x) = \frac{(-\frac{3 \cos x(1 + \sin^2 x)}{\sin^2 x})(4 \cos x) - \left(\frac{3}{\sin x} - 3 \sin x\right)(-4 \sin x)}{(4 \cos x)^2} \] Simplifying the numerator: Calculating the first term: \[ -\frac{3 \cos x(1 + \sin^2 x)}{\sin^2 x} \cdot 4 \cos x = -\frac{12 \cos^2 x(1 + \sin^2 x)}{\sin^2 x} \] Calculating the second term: \[ -4 \sin x \left(\frac{3}{\sin x} - 3 \sin x\right) = -4 \left(3 - 3 \sin^2 x\right) = -12 + 12 \sin^2 x \] Putting it all together, the full derivative is: \[ B'(x) = \frac{-\frac{12 \cos^2 x(1 + \sin^2 x)}{\sin^2 x} + (-12 + 12 \sin^2 x)}{16 \cos^2 x} \] Now you have a greasy mix of trigonometric derivatives, and simplifying that should lead to your final result! Do take care with the signs and combine like terms judiciously. Happy differentiating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad