Use the given conditions to write an equation for the line in point-slope form and slope-intercept form. Passing through \( (-4,-5) \) and \( (1,5) \) What is the equation of the line in point-slope form? \( \square \) (Simplify your answer. Use integers or fractions for any numbers in the equation.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the equation of the line passing through the points \((-4, -5)\) and \( (1, 5)\), we first need to determine the slope (m). The slope is given by the formula \[ m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{5 - (-5)}{1 - (-4)} = \frac{10}{5} = 2. \] Now that we have the slope, we can use point-slope form \(y - y_1 = m(x - x_1)\). Using either point, let's use \((-4, -5)\): \[ y - (-5) = 2(x - (-4)), \] which simplifies to: \[ y + 5 = 2(x + 4). \] For slope-intercept form \(y = mx + b\), we can convert the obtained point-slope equation: 1. Distribute \(2\): \[ y + 5 = 2x + 8. \] 2. Subtract \(5\) from both sides: \[ y = 2x + 3. \] In conclusion, the equation of the line in point-slope form is \[ y + 5 = 2(x + 4) \] and in slope-intercept form is \[ y = 2x + 3. \]
