Pregunta
upstudy study bank question image url

quadatic inequalites \( x^{2}-6 x-12 \geq 0 \)

Ask by Parsons Tran. in South Africa
Jan 31,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

All real numbers \( x \) such that \( x \leq 3 - \sqrt{21} \) or \( x \geq 3 + \sqrt{21} \).

Solución

To solve the quadratic inequality: \[ x^{2} - 6x - 12 \geq 0 \] we'll follow a systematic approach involving the following steps: 1. **Find the Roots of the Quadratic Equation** 2. **Determine the Sign of the Quadratic Expression in Each Interval** 3. **Express the Solution in Interval Notation** Let's go through each step in detail. --- ### 1. Find the Roots of the Quadratic Equation First, solve the corresponding quadratic equation to find its roots: \[ x^{2} - 6x - 12 = 0 \] We can use the **quadratic formula**: \[ x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] where \( a = 1 \), \( b = -6 \), and \( c = -12 \). **Calculate the Discriminant (\( \Delta \))**: \[ \Delta = b^{2} - 4ac = (-6)^{2} - 4 \cdot 1 \cdot (-12) = 36 + 48 = 84 \] Since \( \Delta > 0 \), there are two distinct real roots. **Compute the Roots**: \[ x = \frac{6 \pm \sqrt{84}}{2} = \frac{6 \pm 2\sqrt{21}}{2} = 3 \pm \sqrt{21} \] So, the roots are: \[ x = 3 + \sqrt{21} \quad \text{and} \quad x = 3 - \sqrt{21} \] **Approximate Values** (for better understanding): \[ \sqrt{21} \approx 4.5837 \] \[ x \approx 3 + 4.5837 = 7.5837 \quad \text{and} \quad x \approx 3 - 4.5837 = -1.5837 \] --- ### 2. Determine the Sign of the Quadratic in Each Interval The roots divide the real number line into three intervals: 1. **Interval I**: \( x < 3 - \sqrt{21} \) (approximately \( x < -1.5837 \)) 2. **Interval II**: \( 3 - \sqrt{21} < x < 3 + \sqrt{21} \) (approximately \( -1.5837 < x < 7.5837 \)) 3. **Interval III**: \( x > 3 + \sqrt{21} \) (approximately \( x > 7.5837 \)) Since the coefficient of \( x^{2} \) is positive (\( a = 1 \)), the parabola opens **upwards**. This means: - **Outside the Roots (Intervals I and III)**: The quadratic expression is **positive**. - **Between the Roots (Interval II)**: The quadratic expression is **negative**. --- ### 3. Express the Solution in Interval Notation We are looking for where the quadratic expression is **greater than or equal to zero**: \[ x^{2} - 6x - 12 \geq 0 \] From our analysis: - The expression is **positive** in **Intervals I and III**. - It equals **zero** exactly at the roots. Therefore, the solution includes: - \( x \leq 3 - \sqrt{21} \) - \( x \geq 3 + \sqrt{21} \) **In Interval Notation**: \[ (-\infty, \; 3 - \sqrt{21}] \cup [3 + \sqrt{21}, \; \infty) \] --- ### **Final Answer** All real numbers x with x at most 3 – √21 or at least 3 + √21. In symbols, x ≤ 3 − √21 or x ≥ 3 + √21 Alternatively, using interval notation: \[ (-\infty, \; 3 - \sqrt{21}] \cup [3 + \sqrt{21}, \; \infty) \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the quadratic inequality \( x^{2}-6x-12 \geq 0 \), we first need to find the roots of the corresponding equation \( x^{2}-6x-12 = 0 \). Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2-4ac}}{2a} \), we find the roots are approximately \( x = 6.464 \) and \( x = -0.464 \). This divides the number line into three intervals: \( (-\infty, -0.464) \), \( (-0.464, 6.464) \), and \( (6.464, \infty) \). Testing points in these regions will help determine where the inequality holds true. After testing values from each interval, you'll find that the quadratic is positive (or zero) in the intervals \( (-\infty, -0.464] \) and \( [6.464, \infty) \). Hence, the solution to the inequality \( x^{2}-6x-12 \geq 0 \) is \( x \leq -0.464 \) or \( x \geq 6.464 \). Now, solving quadratic inequalities is not just about finding roots but also about understanding the behavior of the parabola. In this case, because the coefficient of \( x^2 \) is positive, the parabola opens upwards. This means that it will be above the x-axis (or equal to it) in the intervals where we found our solutions. Remember to always check your intervals!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad