The rate at which the population of a certain city increases is proportional to the population. If there were 125,000 people in the city in 1985 and 140,000 in 2000 , what population can be predicted for the year 2025 ? Do not round the value of \( k \), but round your final answer to the nearest whole number.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To solve this problem, we can use the formula for exponential growth, which is given by: \[ P(t) = P_0 e^{kt} \] where: - \( P(t) \) is the population at time \( t \), - \( P_0 \) is the initial population, - \( k \) is the rate of growth, - \( t \) is the time in years. 1. **Identify knowns and set up equations:** - In 1985 (let's set \( t = 0 \)), \( P_0 = 125,000 \). - In 2000 (15 years later, \( t = 15 \)), \( P(15) = 140,000 \). Using the equation for the year 2000: \[ 140,000 = 125,000 e^{15k} \] 2. **Solve for \( k \)**: Dividing both sides by 125,000: \[ e^{15k} = \frac{140,000}{125,000} = 1.12 \] Now, take the natural logarithm of both sides: \[ 15k = \ln(1.12) \] Thus, \[ k = \frac{\ln(1.12)}{15} \] 3. **Now, predict the population for 2025 (40 years after 1985)**: \[ P(40) = 125,000 e^{40k} \] Plugging in the value of \( k \): \[ P(40) = 125,000 e^{40 \cdot \frac{\ln(1.12)}{15}} = 125,000 e^{\frac{40 \cdot \ln(1.12)}{15}} \] \[ = 125,000 \left( e^{\ln(1.12)} \right)^{\frac{8}{3}} = 125,000 \cdot (1.12)^{\frac{8}{3}} \] Calculating \( (1.12)^{\frac{8}{3}} \): \[ (1.12)^{\frac{8}{3}} \approx 1.434 \] Thus, \[ P(40) \approx 125,000 \cdot 1.434 \approx 179,250 \] So, rounding to the nearest whole number, the predicted population for the year 2025 is approximately **179,250**.
