Suppose \( f(5)=-9 \) and \( g(5)=-3 \). Find the following. \( (f+g)(5)=\square \) \( (f-g)(5)=\square \) \( (f g)(5)=\square \) \( \left(\frac{f}{g}\right)(5)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the values, we will apply the definitions of the functions \( f \) and \( g \) and the operations indicated. 1. **For \( (f+g)(5) \)**: \[ (f + g)(5) = f(5) + g(5) = -9 + (-3) = -9 - 3 = -12 \] 2. **For \( (f-g)(5) \)**: \[ (f - g)(5) = f(5) - g(5) = -9 - (-3) = -9 + 3 = -6 \] 3. **For \( (fg)(5) \)**: \[ (fg)(5) = f(5) \cdot g(5) = -9 \cdot (-3) = 27 \] 4. **For \( \left(\frac{f}{g}\right)(5) \)**: \[ \left(\frac{f}{g}\right)(5) = \frac{f(5)}{g(5)} = \frac{-9}{-3} = 3 \] Now, summary of values: \[ (f+g)(5) = -12, \quad (f-g)(5) = -6, \quad (fg)(5) = 27, \quad \left(\frac{f}{g}\right)(5) = 3 \]
