Pregunta
upstudy study bank question image url

Find the location of the local extrema of the following function. \( f(x)=3-x^{\frac{2}{9}} \)

Ask by Hilton Warner. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function \( f(x) = 3 - x^{\frac{2}{9}} \) does not have any local extrema.

Solución

The function \( f(x) = 3 - x^{\frac{2}{9}} \) does not have any local extrema. To find the local extrema of a function, we need to find the critical points by taking the derivative of the function and setting it equal to zero. Let's find the derivative of the function \( f(x) = 3 - x^{\frac{2}{9}} \) with respect to \( x \) and then set it equal to zero to find the critical points. Evaluate the derivative by following steps: - step0: Evaluate the derivative: \(f^{\prime}\left(x\right)=\frac{d}{dx}\left(3-x^{\frac{2}{9}}\right)\) - step1: Use differentiation rules: \(f^{\prime}\left(x\right)=\frac{d}{dx}\left(3\right)-\frac{d}{dx}\left(x^{\frac{2}{9}}\right)\) - step2: Find the derivative: \(f^{\prime}\left(x\right)=0-\frac{2}{9}x^{-\frac{7}{9}}\) - step3: Remove 0: \(f^{\prime}\left(x\right)=-\frac{2}{9}x^{-\frac{7}{9}}\) - step4: Simplify: \(f^{\prime}\left(x\right)=-\frac{2\sqrt[9]{x^{2}}}{9x}\) The derivative of the function \( f(x) = 3 - x^{\frac{2}{9}} \) with respect to \( x \) is \( f'(x) = -\frac{2\sqrt[9]{x^{2}}}{9x} \). To find the critical points, we set the derivative equal to zero and solve for \( x \): \[ -\frac{2\sqrt[9]{x^{2}}}{9x} = 0 \] Solving this equation will give us the critical points of the function. Let's solve it. Solve the equation by following steps: - step0: Solve for \(x\): \(-\frac{2\sqrt[9]{x^{2}}}{9x}=0\) - step1: Find the domain: \(-\frac{2\sqrt[9]{x^{2}}}{9x}=0,x\neq 0\) - step2: Rewrite the expression: \(\frac{-2\sqrt[9]{x^{2}}}{9x}=0\) - step3: Cross multiply: \(-2\sqrt[9]{x^{2}}=9x\times 0\) - step4: Simplify the equation: \(-2\sqrt[9]{x^{2}}=0\) - step5: Change the sign: \(2\sqrt[9]{x^{2}}=0\) - step6: Rewrite the expression: \(\sqrt[9]{x^{2}}=0\) - step7: Set the radicand equal to 0: \(x^{2}=0\) - step8: Set the base equal to 0: \(x=0\) - step9: Check if the solution is in the defined range: \(x=0,x\neq 0\) - step10: Find the intersection: \(x \in \varnothing \) The solution to the equation \( -\frac{2\sqrt[9]{x^{2}}}{9x} = 0 \) is \( x \in \varnothing \), which means there are no real solutions for \( x \). Therefore, the function \( f(x) = 3 - x^{\frac{2}{9}} \) does not have any local extrema.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the local extrema of the function \( f(x) = 3 - x^{\frac{2}{9}} \), we first need to determine the derivative \( f'(x) \). The derivative is given by: \[ f'(x) = -\frac{2}{9}x^{-\frac{7}{9}}. \] Setting the derivative \( f'(x) = 0 \) gives no real solutions since the expression will never equal zero for real \( x \) (it can only be zero if multiplied by zero, which isn't the case here). However, we will analyze the behavior at the endpoints and where the derivative is undefined. The derivative is undefined at \( x = 0 \). Evaluating the function at 0, we find: \[ f(0) = 3 - 0^{\frac{2}{9}} = 3. \] To confirm that this is a local maximum, we can test the intervals around \( x = 0 \): - For \( x < 0 \), \( f'(x) \) is positive because we are squaring a negative number, thus \( f(x) \) is increasing. - For \( x > 0 \), \( f'(x) \) is negative, indicating \( f(x) \) is decreasing. Therefore, \( x = 0 \) is a local maximum, and the location of the local extrema is at \( x = 0 \) with \( f(0) = 3 \). In conclusion, the local extremum occurs at \( x = 0 \) and is a maximum point where \( f(0) = 3 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad