Pregunta
upstudy study bank question image url

A circle has a circumference of 42 inches. Using 3 to approximate pi, find the following: Diameter: \( \frac{14}{7} \frac{19}{90} \) Radius:

Ask by Bright Weston. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Diameter: 14 inches Radius: 7 inches

Solución

To solve the problem, we start with the known condition that the circumference \( C \) of the circle is 42 inches. The formula for the circumference of a circle is given by: \[ C = \pi d \] where \( d \) is the diameter. We will use \( \pi \approx 3 \) for our calculations. ### Step 1: Calculate the Diameter Using the formula for circumference, we can rearrange it to find the diameter: \[ d = \frac{C}{\pi} \] Substituting the known values: \[ d = \frac{42}{3} = 14 \text{ inches} \] ### Step 2: Calculate the Radius The radius \( r \) of a circle is half of the diameter: \[ r = \frac{d}{2} \] Substituting the diameter we found: \[ r = \frac{14}{2} = 7 \text{ inches} \] ### Summary of Results - Diameter: \( 14 \) inches - Radius: \( 7 \) inches Now, let's also evaluate the expression given for the diameter: \[ \frac{14}{7} \cdot \frac{19}{90} \] Calculating this step-by-step: 1. Calculate \( \frac{14}{7} = 2 \). 2. Now calculate \( 2 \cdot \frac{19}{90} = \frac{38}{90} \). To simplify \( \frac{38}{90} \): \[ \frac{38 \div 2}{90 \div 2} = \frac{19}{45} \] Thus, the diameter expressed in the given form is \( \frac{19}{45} \). ### Final Results - Diameter: \( 14 \) inches (or \( \frac{19}{45} \) in the given form) - Radius: \( 7 \) inches

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the diameter of a circle when its circumference is 42 inches, you can use the formula for circumference, \( C = \pi d \). By approximating \(\pi\) as 3, we can rearrange the formula: \[ d = \frac{C}{\pi} = \frac{42}{3} = 14 \text{ inches} \] Now, the radius \( r \) is half of the diameter, so: \[ r = \frac{d}{2} = \frac{14}{2} = 7 \text{ inches} \] Now, let's delve into some useful insights! The fascinating story of the circle dates back to ancient civilizations who studied its properties. The Egyptians and Babylonians, using their own rough versions of \(\pi\), contributed significantly to geometry. Fast forward to the Greeks, and mathematicians like Archimedes refined these calculations, helping establish the principles that underpin our understanding of circles today! Understanding circles is not just academic; it's practical! Whether you're embarking on DIY home projects, cooking with circular dishes, or biking around the park, knowing how to quickly find the radius and diameter helps you make better measurements. For instance, when laying out a garden bed, calculating the required space accurately ensures that your plants get the right conditions to flourish!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad