\( \leftarrow \begin{array}{l}\frac{1}{x}+8 \\ \frac{1}{x}-6 \\ \text { Simplify. } \\ \text { The simplified expression is } 0 \text { of } 1 \\ \text { (Simplify your answer.) }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To simplify the expression \( \frac{1}{x}+8 + \frac{1}{x}-6 \), first combine like terms. This gives us \( 2 \cdot \frac{1}{x} + (8 - 6) \), which simplifies to \( 2 \cdot \frac{1}{x} + 2 \). Next, to combine these, we can rewrite 2 as \( \frac{2x}{x} \), yielding \( \frac{2}{x} + \frac{2x}{x} = \frac{2 + 2x}{x} \). Thus, the simplified expression becomes \( \frac{2(x + 1)}{x} \). Now, if the expression simplifies further, for it to be zero, the numerator must be zero. Therefore, \( 2(x + 1) = 0 \) leads to \( x + 1 = 0 \) or \( x = -1 \). Hence, the simplified expression is \(\frac{2(x + 1)}{x}\), where \( x \neq 0 \).
