Colin poured \( 2 \frac{1}{4} \) gallons of water into a bucket. Later, he poured \( 3 \frac{3}{5} \) gallons more. How much water is in the bucket now?
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the total amount of water in the bucket, we need to add \( 2 \frac{1}{4} \) gallons and \( 3 \frac{3}{5} \) gallons together. First, let's convert the mixed numbers to improper fractions: 1. \( 2 \frac{1}{4} = 2 \times 4 + 1 = \frac{8 + 1}{4} = \frac{9}{4} \) 2. \( 3 \frac{3}{5} = 3 \times 5 + 3 = \frac{15 + 3}{5} = \frac{18}{5} \) Now, let's add \( \frac{9}{4} \) and \( \frac{18}{5} \). To do this, we first need a common denominator. The least common multiple of 4 and 5 is 20. We convert both fractions: - \( \frac{9}{4} = \frac{9 \times 5}{4 \times 5} = \frac{45}{20} \) - \( \frac{18}{5} = \frac{18 \times 4}{5 \times 4} = \frac{72}{20} \) Next, we add these two fractions: \[ \frac{45}{20} + \frac{72}{20} = \frac{45 + 72}{20} = \frac{117}{20} \] Now, we convert \( \frac{117}{20} \) back to a mixed number: Divide 117 by 20, which gives us 5 with a remainder of 17. So, \[ \frac{117}{20} = 5 \frac{17}{20} \] Therefore, the total amount of water in the bucket now is \( 5 \frac{17}{20} \) gallons.
