6.1.2 Exam: Semester 2 Exam Question 10 of 40 Kostya randomly chooses a number from 1 to 10 . What is the probability he chooses a number less than 5 ? A. \( \frac{2}{5} \) B. \( \frac{3}{5} \) C. \( \frac{1}{2} \) D. \( \frac{4}{9} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the probability that Kostya chooses a number less than 5 from the set of numbers 1 to 10, we first identify the favorable outcomes (the numbers less than 5). These numbers are 1, 2, 3, and 4, which gives us 4 favorable outcomes. The total numbers he can choose from are 10. Therefore, the probability is calculated as: \[ \text{Probability} = \frac{\text{Favorable Outcomes}}{\text{Total Outcomes}} = \frac{4}{10} = \frac{2}{5}. \] So the correct answer is A. \( \frac{2}{5} \). Remember, when dealing with probability, always divide the number of successful outcomes by the total number of possible outcomes! This way, you can clearly see the chance of any event happening. Happy calculating!
