2. Find the difference of \( \frac{3}{4}-\frac{2}{8} \). Begin by finding common multiples of the denominators. \( \frac{3}{4} \) Multiples of \( 4: 4 \), \( \frac{2}{8} \) Multiples of \( 8: 8 \), What is the least number that can be used as a common denominator? 3. Write equivalent fractions for \( \frac{3}{4} \) and \( \frac{2}{8} \) with the common denominator you found in Problem 2 \( \frac{3}{4} \times \frac{2}{8}=\frac{2}{8} \times \frac{\square}{8} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the least common denominator for \( \frac{3}{4} \) and \( \frac{2}{8} \), you can look for the smallest multiple that is common to both denominators. The multiples of \( 4 \) are \( 4, 8, 12, \) and so on, while the multiples of \( 8 \) are \( 8, 16, 24, \) and so on. The least common multiple (LCM) is \( 8 \), making it the perfect common denominator for these fractions. Now, let's express both fractions with a denominator of \( 8 \). For \( \frac{3}{4} \), we can multiply both the numerator and the denominator by \( 2 \): \( \frac{3 \times 2}{4 \times 2} = \frac{6}{8} \). For \( \frac{2}{8} \), it stays the same since its denominator is already \( 8 \): \( \frac{2}{8} \). We can now subtract them: \( \frac{6}{8} - \frac{2}{8} = \frac{4}{8} \), which simplifies to \( \frac{1}{2} \)!
