Pregunta
upstudy study bank question image url

Find the final amount of money in an account if \( \$ 1,200 \) is deposited at \( 2.5 \% \) interest compounded semi-annually and the money is left for 9 years. The final amount is \( \$ \square \) Round to the nearest cent. Question Help: \( \square \) Message instructor Calculator Submit Question

Ask by Mcfarlane Tyler. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The final amount in the account is approximately \$1,500.47.

Solución

To find the final amount A in an account where a principal P is compounded, we use the compound interest formula:   A = P(1 + r/n)^(n*t) Where:  P = initial deposit (in dollars)  r = annual interest rate (in decimal)  n = number of compounding periods per year  t = number of years For this problem:  P = 1200 dollars  r = 2.5% = 0.025  n = 2 (since interest is compounded semi-annually)  t = 9 years Step 1: Substitute the values into the formula:  A = 1200 * (1 + 0.025/2)^(2*9) Step 2: Simplify the inside of the parentheses:  0.025/2 = 0.0125, so:  A = 1200 * (1.0125)^(18) Step 3: Calculate (1.0125)^(18)  Using a calculator, (1.0125)^(18) ≈ 1.25039 Step 4: Compute the final amount:  A ≈ 1200 * 1.25039 ≈ 1500.468 Step 5: Round to the nearest cent:  A ≈ $1,500.47 Thus, the final amount in the account after 9 years is approximately $1,500.47.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the final amount, you can use the compound interest formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] where: - \(A\) is the amount of money accumulated after n years, including interest, - \(P\) is the principal amount (the initial amount of money), - \(r\) is the annual interest rate (decimal), - \(n\) is the number of times that interest is compounded per year, - \(t\) is the number of years the money is invested or borrowed. Plugging in the values: - \(P = 1200\) - \(r = 0.025\) (which is \(2.5\%\)), - \(n = 2\) (because the interest is compounded semi-annually), - \(t = 9\). Now, substituting those values into the formula: \[ A = 1200 \left(1 + \frac{0.025}{2}\right)^{2 \cdot 9} \] \[ A = 1200 \left(1 + 0.0125\right)^{18} \] \[ A = 1200 \left(1.0125\right)^{18} \] Calculating \( (1.0125)^{18} \) gives approximately \(1.2434\). Now, calculate \(A\): \[ A \approx 1200 \times 1.2434 \approx 1492.08 \] Thus, the final amount in the account after 9 years is approximately \( \$1492.08 \). So, rounding to the nearest cent, the final amount is \( \$ \mathbf{1492.08} \).

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad