Pregunta
upstudy study bank question image url

For each of the following recurrence relations, pick the correct asymptotic runtime: (a) [5 points] Select the correct asymptotic complexity of an algorithm with runtim \( T(n, n) \) where \[ \begin{aligned} T(x, c) & =\Theta(x) & & \text { for } c \leq 2 \\ T(c, y) & =\Theta(y) & & \text { for } c \leq 2, \text { and } \\ T(x, y) & =\Theta(x+y)+T(x / 2, y / 2) & & \end{aligned} \] 1. \( \Theta(\log n) \). 2. \( \Theta(n) \). 3. \( \Theta(n \log n) \). 4. \( \Theta\left(n \log ^{2} n\right) \). 5. \( \Theta\left(n^{2}\right) \). 6. \( \Theta\left(2^{n}\right) \). (b) [5 points] Select the correct asymptotic complexity of an algorithm with runtim \( T(n, n) \) where \[ \begin{array}{ll} T(x, c)=\Theta(x) & \text { for } c \leq 2 \\ T(c, y)=\Theta(y) & \text { for } c \leq 2, \text { and } \\ T(x, y)=\Theta(x)+T(x, y / 2) & \end{array} \] 1. \( \Theta(\log n) \). 2. \( \Theta(n) \). 3. \( \Theta(n \log n) \). 4. \( \Theta\left(n \log ^{2} n\right) \). 5. \( \Theta\left(n^{2}\right) \). 6. \( \Theta\left(2^{n}\right) \). (c) [5 points] Select the correct asymptotic complexity of an algorithm with runtin \( T(n, n) \) where \[ \begin{array}{rlrl} T(x, c) & =\Theta(x) & \text { for } c \leq 2 \\ T(x, y) & =\Theta(x)+S(x, y / 2), & & \\ S(c, y) & =\Theta(y) & \text { for } c \leq 2, \text { and } \\ S(x, y) & =\Theta(y)+T(x / 2, y) & \end{array} \] 1. \( \Theta(\log n) \). 2. \( \Theta(n) \). 3. \( \Theta(n \log n) \). 4. \( \Theta\left(n \log ^{2} n\right) \). 5. \( \Theta\left(n^{2}\right) \).

Ask by Schofield Mcdonald. in Kenya
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- (a) \( \Theta(n \log n) \) - (b) \( \Theta(n) \) - (c) \( \Theta(n \log n) \)

Solución

To solve the recurrence relations and determine their asymptotic complexities, we will analyze each part step by step. ### (a) The recurrence relation is: \[ \begin{aligned} T(x, c) & =\Theta(x) & \text { for } c \leq 2 \\ T(c, y) & =\Theta(y) & \text { for } c \leq 2, \text { and } \\ T(x, y) & =\Theta(x+y)+T(x / 2, y / 2) & & \end{aligned} \] 1. **Base Cases**: - For \( c \leq 2 \), \( T(x, c) = \Theta(x) \) and \( T(c, y) = \Theta(y) \). 2. **Recursive Case**: - The recursive case \( T(x, y) = \Theta(x+y) + T(x/2, y/2) \) suggests that we are combining the results of two smaller problems. 3. **Analysis**: - The term \( \Theta(x+y) \) dominates the recursion. - Each time we call \( T(x/2, y/2) \), we are halving both \( x \) and \( y \). - This leads to a logarithmic depth of recursion, where at each level we are adding \( \Theta(x+y) \). 4. **Final Complexity**: - The total work done at each level of recursion is \( \Theta(n) \) (where \( n \) is the maximum of \( x \) and \( y \)), and there are \( \log n \) levels. - Thus, the overall complexity is \( \Theta(n \log n) \). **Answer for (a)**: \( \Theta(n \log n) \). --- ### (b) The recurrence relation is: \[ \begin{array}{ll} T(x, c)=\Theta(x) & \text { for } c \leq 2 \\ T(c, y)=\Theta(y) & \text { for } c \leq 2, \text { and } \\ T(x, y)=\Theta(x)+T(x, y / 2) & \end{array} \] 1. **Base Cases**: - Similar to part (a), we have \( T(x, c) = \Theta(x) \) and \( T(c, y) = \Theta(y) \) for \( c \leq 2 \). 2. **Recursive Case**: - The recursive case \( T(x, y) = \Theta(x) + T(x, y/2) \) indicates that we are reducing \( y \) by half at each step while keeping \( x \) constant. 3. **Analysis**: - The term \( \Theta(x) \) is constant for each recursive call, and we will make \( \log y \) calls until \( y \) becomes small enough. - Therefore, the total work done is \( \Theta(x) \) multiplied by the number of levels, which is \( \log y \). 4. **Final Complexity**: - Since \( x \) is constant in terms of \( y \), the overall complexity is \( \Theta(x \log n) \), where \( n \) is the size of \( y \). **Answer for (b)**: \( \Theta(n) \). --- ### (c) The recurrence relation is: \[ \begin{array}{rlrl} T(x, c) & =\Theta(x) & \text { for } c \leq 2 \\ T(x, y) & =\Theta(x)+S(x, y / 2), & & \\ S(c, y) & =\Theta(y) & \text { for } c \leq 2, \text { and } \\ S(x, y) & =\Theta(y)+T(x / 2, y) & \end{array} \] 1. **Base Cases**: - Again, we have \( T(x, c) = \Theta(x) \) and \( S(c, y) = \Theta(y) \) for \( c \leq 2 \). 2. **Recursive Cases**: - The recursive case for \( T(x, y) \) is \( T(x, y) = \Theta(x) + S(x, y/2) \). - The recursive case for \( S(x, y) \) is \( S(x, y) = \Theta(y) + T(x/2, y) \). 3. **Analysis**: - The recursion for \( T(x, y) \) will call \( S(x, y/2) \), which will then call \( T(x/2, y) \). - This creates a nested recursion where both \( x \) and \( y \) are halved at different stages. 4. **Final Complexity**: - The depth of recursion will be \( \log n \) for both \( x \) and \( y \), leading to a total complexity of \( \Theta(n \log n) \). **Answer for (c)**: \( \Theta(n \log n) \). --- ### Summary of Answers: - (a) \( \Theta(n \log n) \) - (b) \( \Theta(n) \) - (c) \( \Theta(n \log n) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The study of recurrence relations has a rich historical background, with roots tracing back to mathematicians like Fibonacci and later, with the advent of computer science, the likes of Donald Knuth. Understanding these relations helps decode the efficiency of algorithms and has shaped the fields of dynamical systems and complexity theory, marking a crucial evolution from theoretical math to practical computing. To apply this knowledge in the real world, consider that many search and sorting algorithms rely on recurrence relations to predict their performance. For instance, merge sort operates with a recurrence relation similar to the ones above, making its analysis critical for software that needs to handle large datasets efficiently, such as searching on e-commerce platforms or sorting extensive records in databases. Understanding the underlying mechanics can lead to optimized algorithms that save on time and computational resources!

preguntas relacionadas

Latest Computer Technology Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad