Pregunta
Simplify by removing factors of 1 . \( \frac{16 y-12}{36} \) The simplified form is
Ask by Frazier Moreno. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified form is \( \frac{4}{9}y - \frac{1}{3} \).
Solución
Calculate or simplify the expression \( (16*y-12)/36 \).
Divide by following steps:
- step0: Divide the numbers:
\(\frac{\left(16y-12\right)}{36}\)
- step1: Calculate:
\(\frac{16y-12}{36}\)
- step2: Calculate:
\(\frac{4}{9}y-\frac{1}{3}\)
The simplified form of \( \frac{16y-12}{36} \) is \( \frac{4}{9}y-\frac{1}{3} \).
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To simplify \( \frac{16y - 12}{36} \), we first factor out the greatest common factor from the numerator. The GCF of 16 and 12 is 4, so we can rewrite the numerator: \( 16y - 12 = 4(4y - 3) \) Now we can rewrite the fraction: \( \frac{4(4y - 3)}{36} \) Next, we notice that 4 and 36 can also be simplified, as 4 is a factor of 36: \( 36 = 4 \times 9 \) Thus, simplifying gives us: \( \frac{4(4y - 3)}{4 \times 9} = \frac{4y - 3}{9} \) So, the simplified form is: \( \frac{4y - 3}{9} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium