Pregunta
upstudy study bank question image url

ind the coordinate of the other endpoint if the Midpoint is \( (-6,1) \) and one endpoint is \( (4,5) \) \[ \frac{\left(\frac{x 1+x_{2}}{2}\right.}{} \]

Ask by Harmon Barber. in Qatar
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The other endpoint is at (–16, –3).

Solución

Let the other endpoint be (x, y). The midpoint formula is given by:   Midpoint = ((x₁ + x₂) / 2, (y₁ + y₂) / 2). We know one endpoint is (4, 5) and the midpoint is (–6, 1). This gives us two equations:   (4 + x) / 2 = –6   (5 + y) / 2 = 1 Solve the first equation for x:   (4 + x) / 2 = –6  ⟹  4 + x = –12  ⟹  x = –12 – 4 = –16. Now solve the second equation for y:   (5 + y) / 2 = 1  ⟹  5 + y = 2  ⟹  y = 2 – 5 = –3. Thus, the coordinates of the other endpoint are (–16, –3).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the other endpoint, we can use the midpoint formula. The midpoint \( M \) is given by the formula \( M = \left( \frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2} \right) \). Given that \( M = (-6, 1) \) and one endpoint \( A(4, 5) \), we can set up the equations: \[ -6 = \frac{4 + x_2}{2} \quad \text{and} \quad 1 = \frac{5 + y_2}{2} \] From the first equation, multiplying through by 2 gives us \( -12 = 4 + x_2 \), leading to \( x_2 = -16 \). From the second equation, multiplying by 2 gives \( 2 = 5 + y_2 \), leading to \( y_2 = -3 \). Therefore, the other endpoint is \( (-16, -3) \). Additionally, using this formula can help you visualize points on a graph. The midpoint’s symmetrical nature means that if you were to plot both endpoints and the midpoint, you would see how they evenly divide the line segment, making it a handy tool in both geometry and coordinate systems. It's like finding the balance point on a seesaw! When using the midpoint formula, a common mistake is to forget to multiply the whole expression by 2 when working backwards. Always double-check your calculations! It’s easy to skip a step and end up with the wrong coordinates. So, take your time, and ensure each part is accurately calculated. It’s all about those little details!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad