Solve the triangle. \( a=8 \quad b=9, G=40^{\circ} \) CN \( \square \) Donst round until the final answer. Then round to the nearest tenth as needed.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To start, we can utilize the Law of Cosines to find \( c \). According to the Law of Cosines: \[ c^2 = a^2 + b^2 - 2ab \cos(G) \] Plugging in our values: \[ c^2 = 8^2 + 9^2 - 2 \cdot 8 \cdot 9 \cdot \cos(40^{\circ}) \] Calculating each component: \[ c^2 = 64 + 81 - 144 \cdot \cos(40^{\circ}) \] Now, calculate \( \cos(40^{\circ}) \) which is approximately 0.7660. So, \[ c^2 = 145 - 144 \cdot 0.7660 \] \[ c^2 = 145 - 110.784 = 34.216 \] Taking the square root: \[ c \approx \sqrt{34.216} \approx 5.85 \] Next, we can use the Law of Sines to find angles \( A \) and \( B \): \[ \frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} \] First, we find \( \sin A \): \[ \frac{8}{\sin A} = \frac{5.85}{\sin(40^{\circ})} \] With \( \sin(40^{\circ}) \approx 0.6428 \): \[ \frac{8}{\sin A} = \frac{5.85}{0.6428} \] Cross-multiplying yields: \[ 8 \cdot 0.6428 = 5.85 \cdot \sin A \] \[ \sin A \approx \frac{5.1424}{5.85} \approx 0.8787 \] Finding angle \( A \): \[ A \approx \arcsin(0.8787) \approx 61.1^{\circ} \] Now we find angle \( B \): \[ B = 180^{\circ} - A - G \] \[ B \approx 180^{\circ} - 61.1^{\circ} - 40^{\circ} \approx 78.9^{\circ} \] In summary, the results are: \[ A \approx 61.1^{\circ}, \quad B \approx 78.9^{\circ}, \quad c \approx 5.9 \] Final rounded values: \[ A \approx 61.1^{\circ}, \quad B \approx 78.9^{\circ}, \quad c \approx 5.9. \]
