Responder
A) The mean of the data is approximately 591.43.
B) The standard deviation of the data is approximately 979.01.
Solución
To find the mean and standard deviation of the given data, we first need to calculate the mean and then the standard deviation.
Given data: 533, 933, 693, 967, 130, 944, 0
A) To find the mean:
1. Calculate the sum of all the numbers:
Sum = 533 + 933 + 693 + 967 + 130 + 944 + 0 = 4140
2. Calculate the mean by dividing the sum by the total number of data points:
Mean = Sum / Total number of data points = 4140 / 7
B) To find the standard deviation:
1. Calculate the variance:
Variance = Σ (x - mean)^2 / (n - 1)
2. Calculate the standard deviation:
Standard Deviation = √Variance
Let's calculate the mean and standard deviation step by step.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{4140}{7}\)
The mean of the given data is approximately 591.43.
Now, let's calculate the standard deviation.
Calculate the value by following steps:
- step0: Calculate:
\(\left(533-591.43\right)^{2}+\left(933-591.43\right)^{2}+\left(693-591.43\right)^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\)
- step1: Subtract the numbers:
\(\left(-58.43\right)^{2}+\left(933-591.43\right)^{2}+\left(693-591.43\right)^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\)
- step2: Subtract the numbers:
\(\left(-58.43\right)^{2}+341.57^{2}+\left(693-591.43\right)^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\)
- step3: Subtract the numbers:
\(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+\left(967-591.43\right)^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\)
- step4: Subtract the numbers:
\(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(130-591.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\)
- step5: Subtract the numbers:
\(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+\left(944-591.43\right)^{2}+\left(0-591.43\right)^{2}\)
- step6: Subtract the numbers:
\(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(0-591.43\right)^{2}\)
- step7: Remove 0:
\(\left(-58.43\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\)
- step8: Convert the expressions:
\(\left(-\frac{5843}{100}\right)^{2}+341.57^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\)
- step9: Convert the expressions:
\(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+101.57^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\)
- step10: Convert the expressions:
\(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+375.57^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\)
- step11: Convert the expressions:
\(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-461.43\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\)
- step12: Convert the expressions:
\(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+352.57^{2}+\left(-591.43\right)^{2}\)
- step13: Convert the expressions:
\(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-591.43\right)^{2}\)
- step14: Convert the expressions:
\(\left(-\frac{5843}{100}\right)^{2}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\)
- step15: Rewrite the expression:
\(\frac{5843^{2}}{100^{2}}+\left(\frac{34157}{100}\right)^{2}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\)
- step16: Rewrite the expression:
\(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\left(\frac{10157}{100}\right)^{2}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\)
- step17: Rewrite the expression:
\(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\left(\frac{37557}{100}\right)^{2}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\)
- step18: Rewrite the expression:
\(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\left(-\frac{46143}{100}\right)^{2}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\)
- step19: Rewrite the expression:
\(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\frac{46143^{2}}{100^{2}}+\left(\frac{35257}{100}\right)^{2}+\left(-\frac{59143}{100}\right)^{2}\)
- step20: Rewrite the expression:
\(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\frac{46143^{2}}{100^{2}}+\frac{35257^{2}}{100^{2}}+\left(-\frac{59143}{100}\right)^{2}\)
- step21: Rewrite the expression:
\(\frac{5843^{2}}{100^{2}}+\frac{34157^{2}}{100^{2}}+\frac{10157^{2}}{100^{2}}+\frac{37557^{2}}{100^{2}}+\frac{46143^{2}}{100^{2}}+\frac{35257^{2}}{100^{2}}+\frac{59143^{2}}{100^{2}}\)
- step22: Transform the expression:
\(\frac{5843^{2}+34157^{2}+10157^{2}+37557^{2}+46143^{2}+35257^{2}+59143^{2}}{100^{2}}\)
- step23: Evaluate the power:
\(\frac{5843^{2}+34157^{2}+10157^{2}+37557^{2}+46143^{2}+35257^{2}+59143^{2}}{10000}\)
Calculate or simplify the expression \( \sqrt{958466.1143} \).
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{958466.1143}\)
- step1: Rewrite the expression:
\(\sqrt{\frac{9584661143}{10000}}\)
- step2: Use the properties of radicals:
\(\frac{\sqrt{9584661143}}{\sqrt{10000}}\)
- step3: Simplify the expression:
\(\frac{\sqrt{9584661143}}{100}\)
The standard deviation of the given data is approximately 979.01.
Therefore, the mean of the data is approximately 591.43, and the standard deviation is approximately 979.01.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución