Pregunta
upstudy study bank question image url

An airline transports over 10,000 passengers daily, and the airline is curious what proportion of their passengers use mobile boarding passes instead of paper passes. They take an SRS of 80 passengers and find that 60 of them use mobile boarding passes. Based on this sample, which of the following is a \( 95 \% \) confidence interval for the proportion of passengers who use mobile boarding passes? Choose 1 answer: (A) \( (0.625,0.875) \) (B) \( (0.637,0.863) \) (C) \( (0.655,0.845) \) (D) \( (0.670,0.830) \)

Ask by John Ward. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The 95% confidence interval for the proportion of passengers using mobile boarding passes is (0.655, 0.845).

Solución

The sample proportion is 0.75 (i.e., 60/80=0.75). The standard error (SE) is calculated as:   SE = √[p(1−p)/n] = √[0.75*0.25/80] = √(0.1875/80) ≈ √0.00234375 ≈ 0.0484. For a 95% confidence interval, the z-score is about 1.96, so the margin of error (ME) is:   ME = 1.96 * 0.0484 ≈ 0.095. Thus, the confidence interval is:   0.75 ± 0.095 = (0.655, 0.845). The closest answer choice is (C).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To calculate the \( 95\% \) confidence interval for the proportion of passengers using mobile boarding passes, we use the formula for the confidence interval for a proportion: \[ \hat{p} \pm z^* \sqrt{\frac{\hat{p}(1 - \hat{p})}{n}} \] Where: - \(\hat{p}\) is the sample proportion (60 out of 80), - \(n\) is the sample size (80), - \(z^*\) is the critical value for \(95\%\) confidence (approximately \(1.96\)). First, calculate \(\hat{p} = \frac{60}{80} = 0.75\). Next, calculate the standard error: \[ SE = \sqrt{\frac{0.75(1 - 0.75)}{80}} = \sqrt{\frac{0.75 \times 0.25}{80}} = \sqrt{\frac{0.1875}{80}} \approx 0.0486 \] Now, calculate the margin of error: \[ ME = z^* \cdot SE = 1.96 \cdot 0.0486 \approx 0.095 \] Finally, construct the confidence interval: \[ 0.75 \pm 0.095 \Rightarrow (0.655, 0.845) \] Thus, the correct answer is: (C) \( (0.655,0.845) \)

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad