Simplify. \[ \left(-4 b^{-2} c^{5}\right)^{2} \] Write your answer using only positive exponents. \( \square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
When simplifying \( \left(-4 b^{-2} c^{5}\right)^{2} \), we need to apply the power to each component inside the parentheses: 1. First, square the coefficient: \(-4\) squared is \(16\). 2. Next, apply the power to \(b^{-2}\): \( (b^{-2})^{2} = b^{-4} \). 3. Finally, apply the power to \(c^{5}\): \( (c^{5})^{2} = c^{10} \). Putting it all together, we have: \[ 16 b^{-4} c^{10} \] To express it using positive exponents, we rewrite \(b^{-4}\) as \(\frac{1}{b^{4}}\): \[ \frac{16 c^{10}}{b^{4}} \] So the simplified form is: \[ \frac{16 c^{10}}{b^{4}} \]
