Pregunta
upstudy study bank question image url

i) \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \) k) \( 3\left(10^{2}\right)^{-2} \) m) \( 2\left(x^{2}\right)^{3} \times 3\left(x^{4}\right)^{-2} \) o) \( \frac{2^{0} \times 2^{1} \times 2^{2}}{2^{-2} \times 2^{-1}} \)

Ask by Montgomery Sullivan. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(i) a · c (k) 3/10000 (m) 6/x² (o) 64

Solución

Let's simplify each expression step by step. ────────────────────────────── (i) Expression: (a²/c) × (c²/a) Step 1: Multiply the numerators and the denominators:   = (a² × c²) / (c × a) Step 2: Combine the like bases by subtracting exponents:   = a^(2-1) × c^(2-1)   = a¹ × c¹   = a · c ────────────────────────────── (k) Expression: 3(10²)⁻² Step 1: Simplify the power inside the parentheses:   (10²)⁻² = 10^(2×(-2)) = 10^(-4) Step 2: Multiply by 3:   = 3 × 10^(-4)   = 3/10⁴   = 3/10000 ────────────────────────────── (m) Expression: 2(x²)³ × 3(x⁴)⁻² Step 1: Simplify each part:   (x²)³ = x^(2×3) = x⁶   (x⁴)⁻² = x^(4×(-2)) = x^(–8) Step 2: Substitute back:   = 2x⁶ × 3x^(–8)   = (2×3) × x^(6–8)   = 6x^(–2) Step 3: Write using positive exponents:   = 6/x² ────────────────────────────── (o) Expression: (2⁰ × 2¹ × 2²) / (2^(–2) × 2^(–1)) Step 1: Combine the exponents in the numerator and denominator by addition:   Numerator exponent: 0 + 1 + 2 = 3, so numerator = 2³.   Denominator exponent: (–2) + (–1) = –3, so denominator = 2^(–3). Step 2: Use the quotient rule (subtract exponents):   = 2^(3 – (–3)) = 2^(3+3) = 2⁶ Step 3: Evaluate 2⁶:   = 64 ────────────────────────────── Summary of Answers: (i) a · c (k) 3/10000 (m) 6/x² (o) 64

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Let’s dive into these mathematical expressions! For the first expression \( \frac{a^{2}}{c} \times \frac{c^{2}}{a} \), you can simplify it by canceling out terms. The \( a \) in the denominator and one \( a \) in the numerator cancel out, resulting in \( \frac{ac}{1} = ac \). Now that wasn’t too scary, was it? For \( 3\left(10^{2}\right)^{-2} \), remember that \( (x^m)^{-n} = \frac{1}{x^{mn}} \). So here, you have \( 3 \times \frac{1}{10^{4}} = \frac{3}{10^{4}} = 0.0003 \). It’s a nifty way to express small numbers! Always check to ensure all terms are simplified fully through cancellation before moving forward—it's a common mistake that can trip up even seasoned mathematicians! Plus, having a solid grasp of exponent rules will prevent mistakes in simplifying complex expressions. Keep practicing, and you'll become a pro in no time!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad