Pregunta
upstudy study bank question image url

The line \( x=\frac{2}{3} \) through the turning point is called the axis of the curve and the curve is symmetry about this line. Example 8.6 .2 Express \( 5-x-2 x^{2} \) in the form \( a-b(x+c)^{2} \) and hence or otherwise find its maximum value and the value of x where this occurs and sketch the graph.

Ask by Ray Maxwell. in Zambia
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function can be written as \( f(x) = -2(x + \frac{1}{4})^2 + \frac{41}{8} \). The maximum value of the function is \( \frac{41}{8} \), which occurs at \( x = -\frac{1}{4} \).

Solución

We start with the function   f(x) = 5 – x – 2x². Step 1. Rewrite the Function in a More Standard Form It is often easier to complete the square when the quadratic is written in the form   f(x) = ax² + bx + c. So write:   f(x) = –2x² – x + 5. Step 2. Factor Out the Coefficient of x² Factor –2 from the x² and x terms:   f(x) = –2 (x² + (1/2)x) + 5. Step 3. Complete the Square To complete the square for the expression in parentheses, look at   x² + (1/2)x. Recall that to complete the square, we add and subtract (half of the coefficient of x)². Here the coefficient of x is 1/2, so half of that is 1/4, and (1/4)² = 1/16. Thus:   x² + (1/2)x    = (x + 1/4)² – 1/16. Substitute this back into f(x):   f(x) = –2 [(x + 1/4)² – 1/16] + 5. Step 4. Distribute and Simplify Distribute the –2:   f(x) = –2 (x + 1/4)² + 2/16 + 5. Since 2/16 simplifies to 1/8, we have:   f(x) = –2 (x + 1/4)² + 1/8 + 5. Now combine the constant terms (writing 5 as 40/8):   1/8 + 40/8 = 41/8. Thus, the function becomes   f(x) = –2 (x + 1/4)² + 41/8. This is now in the form   a – b(x + c)²   with a = 41/8, b = 2, and c = 1/4. Step 5. Find the Maximum Value and the x‐Value at Which It Occurs In the vertex form   f(x) = –2 (x + 1/4)² + 41/8, the vertex (or turning point) occurs when the squared term is zero, which happens at:   x + 1/4 = 0 ⟹ x = –1/4. At x = –1/4, the value of f(x) is   f(–1/4) = 41/8. Since the coefficient of the squared term (–2) is negative, the parabola opens downward and this represents the maximum value of the function. Step 6. Sketching the Graph Key points for the graph: 1. Vertex (Turning Point): (–1/4, 41/8). 2. Axis of Symmetry: The graph is symmetric about the vertical line x = –1/4. 3. y-Intercept: Find by letting x = 0:   f(0) = 5 – 0 – 0 = 5.   So, the point is (0, 5). 4. x-Intercepts: Solve f(x) = 0.   We have: –2x² – x + 5 = 0.   Multiply both sides by –1: 2x² + x – 5 = 0.   Using the quadratic formula, where a = 2, b = 1, c = –5,    x = [–1 ± √(1² – 4·2·(–5))] / (2·2)    x = [–1 ± √(1 + 40)]/4    x = [–1 ± √41] / 4.   So the x-intercepts are at x = (–1 + √41)/4 and x = (–1 – √41)/4. 5. End Behavior: Since the coefficient of x² is –2, as x → ±∞, f(x) → –∞. A rough sketch would show a downward-opening parabola with a vertex at (–0.25, 5.125), crossing the y-axis at (0, 5), and intercepting the x-axis at the two values computed. Final Answer: - The function in the form a – b(x + c)² is   f(x) = –2 (x + 1/4)² + 41/8. - Its maximum value is 41/8, which occurs at x = –1/4.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To express the function \(5 - x - 2x^2\) in the form \(a - b(x + c)^2\), we first rearrange and rewrite it as \(-2x^2 - x + 5\). Next, we factor out the coefficient of \(x^2\) (which is \(-2\)) from the first two terms: \[ -2\left(x^2 + \frac{1}{2}x\right) + 5. \] Now, we complete the square for the quadratic expression \(x^2 + \frac{1}{2}x\). Taking half of the coefficient of \(x\) (which is \(\frac{1}{4}\)), squaring it gives \(\frac{1}{16}\). We add and subtract this inside the parentheses: \[ -2\left(x^2 + \frac{1}{2}x + \frac{1}{16} - \frac{1}{16}\right) + 5 = -2\left((x + \frac{1}{4})^2 - \frac{1}{16}\right) + 5. \] Distributing \(-2\) yields: \[ -2(x + \frac{1}{4})^2 + \frac{2}{16} + 5 = -2(x + \frac{1}{4})^2 + \frac{1}{8} + 5 = -2(x + \frac{1}{4})^2 + \frac{41}{8}. \] Thus, we can express \(5 - x - 2x^2\) in the desired form \( a - b(x+c)^2 \) where \(a = \frac{41}{8}, b = 2,\) and \(c = \frac{1}{4}\). To find the maximum value, note that the maximum point occurs at the turning point, \(x = -c = -\frac{1}{4}\). Substituting \(x = -\frac{1}{4}\) into the original function gives: \[ 5 - (-\frac{1}{4}) - 2(-\frac{1}{4})^2 = 5 + \frac{1}{4} - 2\cdot\frac{1}{16} = 5 + \frac{1}{4} - \frac{1}{8} = \frac{40}{8} + \frac{2}{8} - \frac{1}{8} = \frac{41}{8}. \] Now we have found the maximum value of \(\frac{41}{8}\) occurring at \(x = -\frac{1}{4}\). The graph of the function is a downward-opening parabola, centered around the vertical line \(x = -\frac{1}{4}\) with a maximum height of \(\frac{41}{8}\), giving it a nice symmetric shape around the axis.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad