Pregunta
Solve \( -15 \leq 4 x-7 \leq 5 \) a. The answer in interval notation is \( \infty \) (Enter oo for
Ask by Higgins Adkins. in the United States
Feb 27,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The solution is \([-2, 3]\).
Solución
We start with the compound inequality:
–15 ≤ 4x – 7 ≤ 5
Step 1: Add 7 to all three parts to isolate the term containing x:
–15 + 7 ≤ 4x – 7 + 7 ≤ 5 + 7
–8 ≤ 4x ≤ 12
Step 2: Divide each part by 4 to solve for x:
(–8)/4 ≤ x ≤ 12/4
–2 ≤ x ≤ 3
Thus, the solution in interval notation is [–2, 3].
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Mind Expander
To solve the compound inequality \( -15 \leq 4x - 7 \leq 5 \), start by breaking it into two parts. 1. For \( -15 \leq 4x - 7 \): - Add 7 to both sides to get \( -8 \leq 4x \). - Then, divide by 4 to find \( -2 \leq x \). 2. For \( 4x - 7 \leq 5 \): - Again, add 7 to both sides leading to \( 4x \leq 12 \). - Dividing by 4 yields \( x \leq 3 \). Combining these gives the interval \( -2 \leq x \leq 3 \). In interval notation, this is written as \( [-2, 3] \). So, the final answer in interval notation is: \[ [-2, 3] \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium