Pregunta
upstudy study bank question image url

Determine, without graphing, whether the given quadratic function has a maximum value or a minimum value and then find the value, \( f(x)=3 x^{2}+18 x-5 \) Does the quadratic function f have a minimum value or a maximum value? \( x \) The function \( f \) has a maximum value. What is this minimum or maximum value? (Simplify your answer.)

Ask by Dawson Rowe. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The quadratic function \( f(x) = 3x^2 + 18x - 5 \) has a **minimum value** of **-32**.

Solución

To determine whether the quadratic function \( f(x) = 3x^2 + 18x - 5 \) has a maximum or minimum value, we can analyze the coefficient of the \( x^2 \) term. 1. **Identify the coefficient of \( x^2 \)**: - The coefficient of \( x^2 \) is \( a = 3 \). 2. **Determine if it is a maximum or minimum**: - If \( a > 0 \), the parabola opens upwards, and the function has a minimum value. - If \( a < 0 \), the parabola opens downwards, and the function has a maximum value. - Since \( a = 3 > 0 \), the function \( f \) has a minimum value. 3. **Find the minimum value**: - The minimum value of a quadratic function can be found using the vertex formula \( x = -\frac{b}{2a} \), where \( b \) is the coefficient of \( x \). - Here, \( b = 18 \) and \( a = 3 \). Now, let's calculate the vertex \( x \): \[ x = -\frac{b}{2a} = -\frac{18}{2 \cdot 3} = -\frac{18}{6} = -3 \] 4. **Substitute \( x = -3 \) back into the function to find the minimum value**: \[ f(-3) = 3(-3)^2 + 18(-3) - 5 \] Calculating this step by step: \[ f(-3) = 3(9) + 18(-3) - 5 \] \[ = 27 - 54 - 5 \] \[ = 27 - 54 - 5 = -32 \] Thus, the minimum value of the function \( f(x) \) is \( -32 \). ### Summary: - The function \( f \) has a **minimum value**. - The minimum value is \( -32 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To determine whether the quadratic function \( f(x)=3x^{2}+18x-5 \) has a maximum or minimum value, we look at the coefficient of the \( x^{2} \) term. Since the coefficient (3) is positive, the parabola opens upwards, indicating that the function has a minimum value. To find the minimum value, we use the vertex formula \( x = -\frac{b}{2a} \), where \( a = 3 \) and \( b = 18 \). Substituting these values gives: \[ x = -\frac{18}{2 \times 3} = -3 \] We then substitute \( x = -3 \) back into the function: \[ f(-3) = 3(-3)^{2} + 18(-3) - 5 = 3(9) - 54 - 5 = 27 - 54 - 5 = -32 \] Thus, the minimum value of the function is \( -32 \). The function \( f \) has a minimum value of \( -32 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad