Determine, without graphing, whether the given quadratic function has a maximum value or a minimum value and then find the value, \( f(x)=3 x^{2}+18 x-5 \) Does the quadratic function f have a minimum value or a maximum value? \( x \) The function \( f \) has a maximum value. What is this minimum or maximum value? (Simplify your answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To determine whether the quadratic function \( f(x)=3x^{2}+18x-5 \) has a maximum or minimum value, we look at the coefficient of the \( x^{2} \) term. Since the coefficient (3) is positive, the parabola opens upwards, indicating that the function has a minimum value. To find the minimum value, we use the vertex formula \( x = -\frac{b}{2a} \), where \( a = 3 \) and \( b = 18 \). Substituting these values gives: \[ x = -\frac{18}{2 \times 3} = -3 \] We then substitute \( x = -3 \) back into the function: \[ f(-3) = 3(-3)^{2} + 18(-3) - 5 = 3(9) - 54 - 5 = 27 - 54 - 5 = -32 \] Thus, the minimum value of the function is \( -32 \). The function \( f \) has a minimum value of \( -32 \).
