Pregunta
upstudy study bank question image url

Question (0) Watch Video What is an equation of the line that passes through the points \( (3,-4) \) and \( (-4,3) \) ?

Ask by Rojas Savage. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = -x - 1 \).

Solución

To find the equation of the line through the points (3, –4) and (–4, 3), follow these steps: Step 1: Find the slope (m).   m = (y₂ – y₁) / (x₂ – x₁)   m = (3 – (–4)) / (–4 – 3)   m = (3 + 4) / (–7)   m = 7 / (–7) = –1 Step 2: Use the point-slope form of the line equation.   The point-slope form is: y – y₁ = m (x – x₁)   Using point (3, –4):   y – (–4) = –1 (x – 3)   y + 4 = –1 (x – 3) Step 3: Simplify the equation.   y + 4 = –x + 3   Subtract 4 from both sides:   y = –x + 3 – 4   y = –x – 1 Thus, the equation of the line is:   y = –x – 1

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the equation of the line that passes through the points \( (3,-4) \) and \( (-4,3) \), we first calculate the slope \( m \) using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). Plugging in the points, we get \( m = \frac{3 - (-4)}{-4 - 3} = \frac{7}{-7} = -1 \). Now, using point-slope form \( y - y_1 = m(x - x_1) \), we can substitute \( (3, -4) \) to get \( y + 4 = -1(x - 3) \). Simplifying gives the equation \( y = -x + 1 \). Now you have a cool line with a negative slope, going down to the right! Equations like these pop up all over the place—whether you're figuring out how to build a ramp or plotting paths in video games, knowing how to derive equations from points is super useful. Another fun fact: The two points you picked create a line that has special symmetry! If you were to reflect either point over the line \( y = x \), you'd land on the other point. It’s like they’re dancing across the diagonal! Being able to spot patterns like these can help you simplify problems and make calculations easier. Enjoy your exploration of lines and slopes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad