Pregunta
upstudy study bank question image url

Given the following function, (a) find the vertex; (b) determine whether there is a maximum or a minimum value, and find the value; (c) find the range; and (d) find intervals on which the function is increasing and the intervals on which the function is decreasing. \[ f(x)=x^{2}+10 x+24 \] (Type an integer or a fraction.) A. The parabola opens downward and has a maximum value of \( \square \) . B. The parabola opens upward and has a minimum value of -1 (c) What is the range of \( f(x) \) ? The range of \( f(x) \) is \( [-1, \infty) \). (Type your answer in interval notation. Use integers or fractions for any numbers in the expression.) (d) On what interval is the function increasing? The function is increasing on \( (-5, \infty) \). (Type your answer in interval notation. Use integers or fractions for any numbers in the expression.) On what interval is the function decreasing? The function is decreasing on \( \square \). \( \square \) (Type your answer in interval notation. Use integers or fractions for any numbers in tire expression.)

Ask by Ramirez O'Quinn. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The function is decreasing on (–∞, –5).

Solución

We begin with the given function:   f(x) = x² + 10x + 24. Step (a): Find the vertex.   Complete the square:     f(x) = x² + 10x + 24       = (x² + 10x + 25) - 25 + 24       = (x + 5)² - 1.   Thus, the vertex is at (–5, –1). Step (b): Determine maximum or minimum value.   Since the coefficient of x² is positive (1 > 0), the parabola opens upward. This means the vertex is the minimum point.   Minimum value = –1. Step (c): Find the range.   The minimum output is –1 and the graph extends upward indefinitely.   Range: [–1, ∞). Step (d): Determine intervals of increase and decrease.   The vertex at x = –5 divides the parabola into two intervals.   • For x < –5, the function decreases.   • For x > –5, the function increases.   Thus, the function is:    • Increasing on (–5, ∞)    • Decreasing on (–∞, –5). Now we match these answers with the blanks: A. The parabola opens downward and has a maximum value of ☐.   (Answer: Incorrect premise; the parabola opens upward.) B. The parabola opens upward and has a minimum value of –1. C. The range of f(x) is [–1, ∞). D. The function is increasing on (–5, ∞) and decreasing on (–∞, –5). Thus, the answer to the blank for "On what interval is the function decreasing?" is:   (–∞, –5).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve for the vertex of the function \( f(x) = x^2 + 10x + 24 \), we use the vertex formula \( x = -\frac{b}{2a} \), where \( a = 1 \) and \( b = 10 \). Plugging these values in gives us \( x = -\frac{10}{2(1)} = -5 \). Substituting \( x = -5 \) back into the function to find the y-coordinate produces \( f(-5) = (-5)^2 + 10(-5) + 24 = -1 \). This means the vertex is at \( (-5, -1) \). Since the parabola opens upward due to the positive leading coefficient \( a = 1 \), \( f(x) \) has a minimum value of \( -1 \). Thus, the correct answer for part (b) is that it has a minimum value of \( -1 \). For part (c), the range of the function is \( [-1, \infty) \), indicating that the function's output starts at its minimum value of \( -1 \) and can go up to infinity. For part (d), the intervals of increase and decrease can be deduced from the vertex. The function decreases on the interval \( (-\infty, -5) \) and increases on \( (-5, \infty) \). Therefore, the function is decreasing on \( (-\infty, -5) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad