Pregunta
upstudy study bank question image url

\( x-6 ; 2 x-6 ; 5 x+3 \) forms a GP Determine the first three terms

Ask by Schultz Daniel. in South Africa
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The first three terms of the geometric progression are either 3, 12, 48 or –12, –18, –27.

Solución

We are given that the three numbers   x – 6, 2x – 6, 5x + 3 form a geometric progression (GP). In a GP the square of the middle term equals the product of the first and third terms. Therefore, we set up the equation   (2x – 6)² = (x – 6)(5x + 3). Step 1. Expand both sides:  Left side:   (2x – 6)² = 4x² – 24x + 36.  Right side:   (x – 6)(5x + 3) = 5x² + 3x – 30x – 18 = 5x² – 27x – 18. Step 2. Set the equation:   4x² – 24x + 36 = 5x² – 27x – 18. Step 3. Rearrange to bring all terms to one side:   4x² – 24x + 36 – 5x² + 27x + 18 = 0   –x² + 3x + 54 = 0. Multiply through by –1 to make the quadratic standard:   x² – 3x – 54 = 0. Step 4. Solve the quadratic equation: The discriminant is   D = (–3)² – 4(1)(–54) = 9 + 216 = 225. Taking the square root gives √225 = 15. Thus, the solutions are:   x = [3 ± 15] / 2. So, the two possible values for x are:   x = (3 + 15)/2 = 18/2 = 9,   x = (3 – 15)/2 = (–12)/2 = –6. Step 5. Find the three terms for each value of x: Case 1: When x = 9  First term: x – 6 = 9 – 6 = 3,  Second term: 2x – 6 = 18 – 6 = 12,  Third term: 5x + 3 = 45 + 3 = 48. Check: 12/3 = 4 and 48/12 = 4, so the common ratio is 4. Case 2: When x = –6  First term: x – 6 = –6 – 6 = –12,  Second term: 2x – 6 = –12 – 6 = –18,  Third term: 5x + 3 = –30 + 3 = –27. Check: (–18)/(–12) = 1.5 and (–27)/(–18) = 1.5, so here the common ratio is 1.5. Thus, the first three terms of the GP can be either:  • 3, 12, 48  (or with common ratio 4), or  • –12, –18, –27  (or with common ratio 1.5). These are the possible sequences that satisfy the given condition.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To determine if the terms \( x-6 \), \( 2x-6 \), and \( 5x+3 \) form a geometric progression (GP), we need to check if the ratio of the second term to the first term is equal to the ratio of the third term to the second term. Let's set the common ratio \( r \): \[ r = \frac{2x - 6}{x - 6} = \frac{5x + 3}{2x - 6} \] Cross-multiplying gives: \[ (2x - 6)^2 = (x - 6)(5x + 3) \] Expanding both sides: \[ 4x^2 - 24x + 36 = 5x^2 - 27x - 18 \] Bringing all terms to one side, we simplify to: \[ 0 = x^2 - 3x - 54 \] Factoring or using the quadratic formula: \[ x = \frac{3 \pm \sqrt{9 + 216}}{2} = \frac{3 \pm 15}{2} \] Calculating the roots gives: \[ x = 9 \quad \text{or} \quad x = -6 \] Now substituting \( x = 9 \) into the terms: 1. \( x - 6 = 3 \) 2. \( 2x - 6 = 12 \) 3. \( 5x + 3 = 48 \) So, the first three terms in this case are \( 3, 12, 48 \). For \( x = -6 \): 1. \( x - 6 = -12 \) 2. \( 2x - 6 = -18 \) 3. \( 5x + 3 = -27 \) In this case, the first three terms are \( -12, -18, -27 \). So, the final answer for the first set of values is: \( 3, 12, 48 \) or \( -12, -18, -27 \) depending on the value of \( x \) chosen.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad