If a raindrop weighs 160 mg (milligram) on average and \( 2.6 \times 10^{3} \) raindrops fall on the lawn every 10 minutes, what mass in kilogram \( (\mathrm{kg} \) ) of rain falls on the lawn in 6 mins? (Answer to I decimal place)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To find the mass of rain that falls on the lawn in 6 minutes, we first determine how many raindrops fall in that time. Since \( 2.6 \times 10^{3} \) raindrops fall every 10 minutes, we can find the number of raindrops in 6 minutes using a simple ratio: \[ \text{Raindrops in 6 minutes} = \frac{2.6 \times 10^3 \text{ drops}}{10 \text{ min}} \times 6 \text{ min} = 1.56 \times 10^3 \text{ drops} \] Next, we calculate the total mass of these raindrops. Since one raindrop weighs 160 mg, we multiply the number of raindrops by the weight of one raindrop: \[ \text{Total mass (mg)} = 1.56 \times 10^3 \text{ drops} \times 160 \text{ mg/drop} = 249600 \text{ mg} \] Now, we convert this mass from milligrams to kilograms (since \( 1 \text{ kg} = 10^6 \text{ mg} \)): \[ \text{Total mass (kg)} = \frac{249600 \text{ mg}}{10^6 \text{ mg/kg}} = 0.2496 \text{ kg} \] Rounding the answer to one decimal place, we have: \[ \text{Total mass of rain in 6 mins is } 0.2 \text{ kg.} \]
