Pregunta
upstudy study bank question image url

\( (f+g)(x)=5 x^{2}+x+1 \) (Simplify your answer.) What is the domain of \( f+g \) ? A. The domain of \( f+g \) is \( (-\infty, \infty) \). (Type your answer in interval notation.) B. The domain of \( f+g \) is \( \{\quad\} \). (Use a comma to separate answers as needed.) C. The domain of \( f+g \) is \( \varnothing \). \( (f-g)(x)=\square \) (Simplify your answer.)

Ask by Horton Watson. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The domain of \( f+g \) is all real numbers, and the expression for \( (f-g)(x) \) cannot be determined with the given information.

Solución

To solve the problem, we will follow these steps: 1. **Identify the expression for \( (f+g)(x) \)** and simplify it. 2. **Determine the domain of \( f+g \)**. 3. **Find the expression for \( (f-g)(x) \)**. ### Step 1: Simplifying \( (f+g)(x) \) The expression given is: \[ (f+g)(x) = 5x^2 + x + 1 \] This expression is already in its simplest form. ### Step 2: Determining the Domain of \( f+g \) The function \( (f+g)(x) = 5x^2 + x + 1 \) is a polynomial function. The domain of any polynomial function is all real numbers. Therefore, the domain of \( f+g \) is: \[ (-\infty, \infty) \] ### Step 3: Finding \( (f-g)(x) \) To find \( (f-g)(x) \), we need to express it in terms of \( f \) and \( g \). However, we do not have explicit expressions for \( f(x) \) and \( g(x) \). Assuming \( f(x) \) and \( g(x) \) are such that: \[ f(x) + g(x) = 5x^2 + x + 1 \] We can express \( (f-g)(x) \) in terms of \( (f+g)(x) \) and \( (f-g)(x) \) as follows: \[ (f-g)(x) = (f+g)(x) - 2g(x) \] However, without specific values or forms for \( f(x) \) and \( g(x) \), we cannot simplify \( (f-g)(x) \) further. ### Summary of Answers - The domain of \( f+g \) is \( (-\infty, \infty) \). - The expression for \( (f-g)(x) \) cannot be determined without additional information about \( f(x) \) and \( g(x) \). Thus, the answers are: - **Domain of \( f+g \)**: A. The domain of \( f+g \) is \( (-\infty, \infty) \). - **Expression for \( (f-g)(x) \)**: Cannot be determined without more information.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

The expression \( (f+g)(x) = 5x^2 + x + 1 \) is a polynomial, and polynomials have a domain of all real numbers. So, the domain of \( f+g \) is indeed \( (-\infty, \infty) \). Now, moving to the expression for \( (f-g)(x) \): Since \( (f+g)(x) = 5x^2 + x + 1 \), to find \( (f-g)(x) \), we need to express \( f(x) \) and \( g(x) \). We can assume: - Let \( f(x) = 5x^2 + a \) - Let \( g(x) = x + 1 - a \) where \( a \) is some constant. Then, \( (f-g)(x) = (f(x) - g(x)) \) simplifies to: \[ (f-g)(x) = (5x^2 + a) - (x + 1 - a) = 5x^2 - x + 2a - 1. \] If we further define \( a \) to be 0 for simplicity, then \( (f-g)(x) = 5x^2 - x - 1 \) would be the simplified form. Now, for a little fun fact: Did you know that the quadratic equations illustrated here have all sorts of applications, from calculating trajectories in physics to optimizing areas in economics? You can find all sorts of real-world uses for polynomials! As for more problems like this, grab a math puzzle book or an online resource! Those can be fantastic for sharpening your skills and having fun while you're at it. Mathematical concepts can be beautifully complex, and solving more problems can deepen your understanding. Enjoy your math journey!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad