Pregunta
upstudy study bank question image url

Solve the following inequality. Write the inequality in interval notation, and graph it. \( 3 x-(6 x+1) \leq 8 x+2(x-3) \) The solution set is (Type your answer in.interval notation. Type an integer or a fraction)

Ask by Vargas Rodriguez. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is \( x \geq \frac{5}{13} \), which in interval notation is \([ \frac{5}{13}, \infty)\).

Solución

Solve the equation \( 3x-(6x+1) \leq 8x+2(x-3) \). Solve the inequality by following steps: - step0: Solve for \(x\): \(3x-\left(6x+1\right)\leq 8x+2\left(x-3\right)\) - step1: Subtract the terms: \(-3x-1\leq 8x+2\left(x-3\right)\) - step2: Move the expression to the left side: \(-3x-1-\left(8x+2\left(x-3\right)\right)\leq 0\) - step3: Subtract the terms: \(-11x-1-2\left(x-3\right)\leq 0\) - step4: Calculate: \(-13x+5\leq 0\) - step5: Move the constant to the right side: \(-13x\leq 0-5\) - step6: Remove 0: \(-13x\leq -5\) - step7: Change the signs: \(13x\geq 5\) - step8: Divide both sides: \(\frac{13x}{13}\geq \frac{5}{13}\) - step9: Divide the numbers: \(x\geq \frac{5}{13}\) The solution to the inequality \(3x-(6x+1) \leq 8x+2(x-3)\) is \(x \geq \frac{5}{13}\). To write this in interval notation, we can express it as \([ \frac{5}{13}, \infty)\). To graph this inequality, we can plot the point \(\frac{5}{13}\) on the number line and shade the region to the right of this point, indicating that all values of \(x\) greater than or equal to \(\frac{5}{13}\) satisfy the inequality.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality \( 3 x - (6 x + 1) \leq 8 x + 2(x - 3) \), we first simplify both sides. Starting with the left side: \[ 3x - (6x + 1) = 3x - 6x - 1 = -3x - 1. \] Now simplifying the right side: \[ 8x + 2(x - 3) = 8x + 2x - 6 = 10x - 6. \] Now we can rewrite the inequality: \[ -3x - 1 \leq 10x - 6. \] Next, let's isolate \(x\). Adding \(3x\) to both sides gives us: \[ -1 \leq 13x - 6. \] Adding \(6\) to both sides gets us: \[ 5 \leq 13x. \] Now divide by \(13\): \[ \frac{5}{13} \leq x. \] This can be rewritten as: \[ x \geq \frac{5}{13}. \] In interval notation, the solution set is: \[ \left[ \frac{5}{13}, \infty \right). \] Now for the graph: On a number line, you would have a solid dot at \( \frac{5}{13} \) (indicating that it’s included) and a shaded line extending to the right towards infinity. So, the complete answer is: The solution set is \( \left[ \frac{5}{13}, \infty \right) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad