Part 1 of 4 Walch the video and then solve the problem given below. Click here to watch the video. For the given functions, find \( (f \circ g)(x) \) and \( (g \circ f)(x) \) and the domain of each. \( f(x)=\frac{2}{1-7 x}, g(x)=\frac{1}{x} \) \( (f \circ g)(x)=\square \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find \( (f \circ g)(x) \), we substitute \( g(x) \) into \( f(x) \): \[ g(x) = \frac{1}{x} \] Now plug this into \( f(x) \): \[ f(g(x)) = f\left(\frac{1}{x}\right) = \frac{2}{1 - 7\left(\frac{1}{x}\right)} = \frac{2}{1 - \frac{7}{x}} = \frac{2x}{x - 7} \] The domain of \( (f \circ g)(x) \) includes all \( x \) except where \( g(x) \) is undefined or makes the denominator in \( f(g(x)) \) zero. Thus, \( x \neq 0 \) and \( x \neq 7 \). Now for \( (g \circ f)(x) \): \[ f(x) = \frac{2}{1 - 7x} \] Plug this into \( g(x) \): \[ g(f(x)) = g\left(\frac{2}{1 - 7x}\right) = \frac{1}{\frac{2}{1 - 7x}} = \frac{1 - 7x}{2} \] The domain for \( (g \circ f)(x) \) consists of all \( x \) such that \( f(x) \) is defined, excluding any value that would make the denominator in \( f(x) \) zero: \( 1 - 7x \neq 0 \) leads to \( x \neq \frac{1}{7} \). So we find: \[ (f \circ g)(x) = \frac{2x}{x - 7}, \quad \text{Domain: } x \neq 0, 7 \] \[ (g \circ f)(x) = \frac{1 - 7x}{2}, \quad \text{Domain: } x \neq \frac{1}{7} \]
