Prove by induction that, for all positive integers \( n \), \[ \sum_{r=1}^{n}\left(4 r^{3}+3 r^{2}+r\right)=n(n+1)^{3} \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To prove by induction that \[ \sum_{r=1}^{n}\left(4 r^{3}+3 r^{2}+r\right)=n(n+1)^{3}, \] we will follow the standard process of mathematical induction. **Base Case:** First, let's check the base case for \( n = 1 \): \[ \sum_{r=1}^{1}\left(4 r^{3}+3 r^{2}+r\right) = 4(1^{3}) + 3(1^{2}) + 1 = 4 + 3 + 1 = 8. \] Now, calculate \( n(n+1)^3 \) for \( n = 1 \): \[ 1(1+1)^3 = 1 \cdot 2^3 = 1 \cdot 8 = 8. \] Since both sides are equal, the base case holds true. **Inductive Step:** Assume the statement is true for some positive integer \( k \), i.e., \[ \sum_{r=1}^{k}\left(4 r^{3}+3 r^{2}+r\right) = k(k+1)^{3}. \] We need to show it holds for \( k + 1 \): \[ \sum_{r=1}^{k+1}\left(4 r^{3}+3 r^{2}+r\right) = \sum_{r=1}^{k}\left(4 r^{3}+3 r^{2}+r\right) + \left(4(k+1)^{3}+3(k+1)^{2}+(k+1)\right). \] By the inductive hypothesis: \[ = k(k+1)^{3} + \left(4(k+1)^{3}+3(k+1)^{2}+(k+1)\right). \] Next, we combine these terms. Notice that: \[ = k(k+1)^{3} + (k + 1)(4(k+1)^{2} + 3(k + 1) + 1). \] Factor out \( (k + 1) \): \[ = k(k+1)^{3} + (k + 1) \left(4(k + 1)^{2} + 3(k + 1) + 1\right). \] Now we need to simplify \( 4(k + 1)^{2} + 3(k + 1) + 1 \): \[ = 4(k^{2}+2k+1) + 3(k+1) + 1 = 4k^{2} + 8k + 4 + 3k + 3 + 1 = 4k^{2} + 11k + 8. \] So, \[ = k(k+1)^{3} + (k + 1)(4k^{2} + 11k + 8). \] Now let's distribute: The first term is: \[ k(k+1)^{3} = k(k^3 + 3k^2 + 3k + 1) = k^{4} + 3k^{3} + 3k^{2} + k. \] The second term is: \[ (k + 1)(4k^{2} + 11k + 8) = 4k^{3} + 15k^{2} + 19k + 8. \] Combining these, the total becomes: \[ k^{4} + (3k^{3} + 4k^{3}) + (3k^{2} + 15k^{2}) + (k + 19k) + 8, \] which simplifies to: \[ k^{4} + 7k^{3} + 18k^{2} + 20k + 8. \] Now we need to see if this is equal to \( (k + 1)(k + 2)^{3} \): Calculating \( (k + 1)(k + 2)^{3} \): First, expand: \[ (k + 2)^{3} = k^{3} + 6k^{2} + 12k + 8. \] Thus: \[ (k + 1)(k^{3} + 6k^{2} + 12k + 8) = k^{4} + 7k^{3} + 18k^{2} + 20k + 8. \] We can clearly see both expressions match, hence we verify the inductive step. By the principle
