\begin{tabular}{l} Question 9 of 12, Step 1 of 1 \\ Find the GCF (greatest common factor) of the following terms. \\ \hline Correct \\ \hline\( \left\{6 x y, 2 x^{3} y\right\} \) \\ \hline\end{tabular}
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To find the greatest common factor (GCF) of \(6xy\) and \(2x^3y\), start by identifying the coefficients and variable parts. The coefficients are 6 and 2, and the GCF of these is 2. For the variables, \(xy\) contains \(x^1\) and \(y^1\), while \(2x^3y\) contains \(x^3\) and \(y^1\). The GCF of the variables is \(x^1y^1\). Therefore, the GCF of \(6xy\) and \(2x^3y\) is \(2xy\). When determining GCFs, remember to list the factors of each term to ensure you catch everything! A common mistake is overlooking the variables or just focusing on the numerical coefficients. Always factor both parts together for precision.
