Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { 3 \left. \begin{array} { l } { \frac { 1 + \tan ^ { 2 } x } { 1 - \tan ^ { 2 } x } = \frac { 1 } { 2 \cos ^ { 2 } x - 1 } } \\ { 1 + \sin x \quad 1 - \sin x } \\ { } \end{array} \right. = 4 } \end{array} \right. \)

Ask by Hill Ford. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation \(\frac{1 + \tan^2 x}{1 - \tan^2 x} = \frac{1}{2 \cos^2 x - 1}\) holds true for all \(x\) where the expressions are defined.

Solución

To solve the given problem, we need to analyze the equation step by step. The equation provided is: \[ \frac{1 + \tan^2 x}{1 - \tan^2 x} = \frac{1}{2 \cos^2 x - 1} \] We also have the expression \(1 + \sin x\) and \(1 - \sin x\) which seems to be part of a larger context, but let's focus on solving the equation first. ### Step 1: Simplify the Left Side Using the identity \(1 + \tan^2 x = \sec^2 x\), we can rewrite the left side: \[ \frac{\sec^2 x}{1 - \tan^2 x} \] Next, we can express \(1 - \tan^2 x\) in terms of sine and cosine: \[ 1 - \tan^2 x = 1 - \frac{\sin^2 x}{\cos^2 x} = \frac{\cos^2 x - \sin^2 x}{\cos^2 x} = \frac{\cos 2x}{\cos^2 x} \] Thus, the left side becomes: \[ \frac{\sec^2 x}{\frac{\cos 2x}{\cos^2 x}} = \frac{\sec^2 x \cdot \cos^2 x}{\cos 2x} = \frac{1}{\cos 2x} \] ### Step 2: Simplify the Right Side The right side is already in a simplified form: \[ \frac{1}{2 \cos^2 x - 1} \] ### Step 3: Set the Two Sides Equal Now we set the two sides equal to each other: \[ \frac{1}{\cos 2x} = \frac{1}{2 \cos^2 x - 1} \] ### Step 4: Cross Multiply Cross multiplying gives us: \[ 2 \cos^2 x - 1 = \cos 2x \] Using the double angle identity for cosine, we know that: \[ \cos 2x = 2 \cos^2 x - 1 \] This means that both sides of the equation are equal, confirming that the equation holds true for all \(x\). ### Step 5: Analyze the Additional Expression The additional expression \(1 + \sin x\) and \(1 - \sin x\) does not seem to directly relate to the equation we solved. If it is part of a larger context or if there are specific values or conditions to apply, please provide that information for further analysis. ### Conclusion The equation \(\frac{1 + \tan^2 x}{1 - \tan^2 x} = \frac{1}{2 \cos^2 x - 1}\) holds true for all \(x\) where the expressions are defined. If you have any specific values or further context regarding \(1 + \sin x\) and \(1 - \sin x\), please let me know!

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

Did you know that the relationship between trigonometric functions and calculus has been established since the time of ancient Greek mathematicians? They initially used geometry for understanding these concepts, paving the way for the formal study of trigonometric identities we utilize today. The interplay between these ancient practices and modern mathematical techniques continues to inspire students and mathematicians alike! Want to put your newfound knowledge to good use? Try exploring how trigonometric identities apply in real-life scenarios, such as engineering or physics. For instance, understanding how sine, cosine, and tangent relate to waves can help in designing audio equipment or analyzing light patterns. Engaging with real-world applications not only reinforces your understanding but also brings a sense of excitement to your math journey!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad