Pregunta
upstudy study bank question image url

Without solving for the undetermined coefficients, the correct form of a particular solution of the differential equation \( y^{\prime \prime}+4 y^{\prime}-2 y=x^{2}+4 \) \( y_{p}=A x+B \) \( y_{p}=c_{1} e^{a x}+c_{2} x e^{b x} \) \( y_{p}=A \) \( y_{p}=c_{1} e^{a x}+c_{2} e^{b x} \) \( y_{p}=A x^{2}+B x+C \)

Ask by West Gonzalez. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The correct form of the particular solution is \( y_p = Ax^2 + Bx + C \).

Solución

To determine the correct form of a particular solution \( y_p \) for the differential equation \[ y^{\prime \prime} + 4y^{\prime} - 2y = x^2 + 4, \] we need to analyze the right-hand side of the equation, which is \( x^2 + 4 \). ### Step 1: Identify the form of the non-homogeneous term The right-hand side \( x^2 + 4 \) is a polynomial of degree 2. Therefore, we typically choose a particular solution that is also a polynomial of the same degree. ### Step 2: Choose the form of the particular solution Given that the non-homogeneous term is a polynomial of degree 2, the appropriate form for the particular solution \( y_p \) would be: \[ y_p = Ax^2 + Bx + C, \] where \( A \), \( B \), and \( C \) are constants to be determined. ### Step 3: Evaluate the other options 1. **\( y_p = Ax + B \)**: This is a linear polynomial and would not be sufficient to match the quadratic term \( x^2 \). 2. **\( y_p = c_1 e^{ax} + c_2 x e^{bx} \)**: This form is used for non-homogeneous terms involving exponentials, which does not apply here. 3. **\( y_p = A \)**: This is a constant solution and cannot account for the polynomial terms. 4. **\( y_p = c_1 e^{ax} + c_2 e^{bx} \)**: Similar to the previous exponential forms, this does not match the polynomial nature of the right-hand side. 5. **\( y_p = Ax^2 + Bx + C \)**: This is the correct choice as it matches the degree of the polynomial on the right-hand side. ### Conclusion The correct form of a particular solution for the given differential equation is: \[ y_p = Ax^2 + Bx + C. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find a particular solution for the given differential equation \( y^{\prime \prime}+4 y^{\prime}-2 y=x^{2}+4 \), we first take a look at the right-hand side, which is a polynomial of degree 2 (specifically \( x^2 + 4 \)). For polynomial forcing functions, the typical approach is to assume a polynomial form for \( y_p \). Since the right-hand side is a quadratic polynomial, the most fitting form for the particular solution would be \( y_p = A x^{2} + B x + C \), where \( A \), \( B \), and \( C \) are constants to be determined later. The other forms listed, like exponential functions or constants, would not adequately capture the polynomial nature of the non-homogeneous term. Forcing functions often dictate the structure of the trial solutions. In this scenario, since we have a polynomial on the right, we gravitate towards a polynomial form on the left to match it effectively! Now, let's turn our curiosity towards the intricacies. Did you know that the method of undetermined coefficients relies on these clever assumptions? If the non-homogeneous term included trigonometric or exponential functions, we'd need to alter our approach accordingly! So, it’s all connected—each term influences how we structure our guess for the solution! Keep exploring, and you’ll see the patterns emerge!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad