Pregunta
upstudy study bank question image url

Part 3: Compound Interest ( 10 points) A fast-food restaurant manager has saved \( \$ 15,000 \) for investment and is planning to invest the money in a retirement savings account offering \( 5.95 \% \) interest, compounded monthly. The amount of time it would take the manager to reach a balance of \( \$ 65,000 \) can be modeled by the equation log \( 4.33333=\log (1.00495833)^{12 t} \). Solve for the time in years, rounded to the nearest tenth of a year, showing all steps.

Ask by Schofield Hill. in the United States
Feb 24,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The time needed is approximately 24.7 years.

Solución

We start with the equation   log(4.33333) = log[(1.00495833)^(12t)]. Step 1. Use the logarithm power rule which tells us that log(a^b) = b · log(a). Applying this rule to the right side gives   log(4.33333) = 12t · log(1.00495833). Step 2. Solve for t by dividing both sides by 12 · log(1.00495833):   t = log(4.33333) / (12 · log(1.00495833)). Step 3. Calculate the logarithms. (You can use any logarithm base since they cancel out, but here we use base 10.)   For the numerator:     log(4.33333) ≈ 0.6375   For the denominator:     log(1.00495833) ≈ 0.002151   Then,     12 · log(1.00495833) ≈ 12 × 0.002151 = 0.025812 Step 4. Divide the numerator by the denominator:   t ≈ 0.6375 / 0.025812 ≈ 24.7 Thus, the time needed is approximately 24.7 years (rounded to the nearest tenth).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve for the time \( t \) in years, we start with the equation provided: \[ \log 4.33333 = \log (1.00495833)^{12t} \] Using the logarithmic power rule, we can move the exponent in front: \[ \log 4.33333 = 12t \cdot \log(1.00495833) \] Next, we isolate \( t \) by dividing both sides by \( 12 \cdot \log(1.00495833) \): \[ t = \frac{\log 4.33333}{12 \cdot \log(1.00495833)} \] Now, we will calculate \( \log 4.33333 \) and \( \log(1.00495833) \): 1. Using a calculator: - \( \log 4.33333 \approx 0.6386 \) - \( \log(1.00495833) \approx 0.00215 \) Substituting these values into the equation for \( t \): \[ t = \frac{0.6386}{12 \cdot 0.00215} \] Calculating the denominator: \[ 12 \cdot 0.00215 \approx 0.0258 \] Now we can calculate \( t \): \[ t \approx \frac{0.6386}{0.0258} \approx 24.752 \] Rounding to the nearest tenth: \[ t \approx 24.8 \] Thus, the manager will take approximately \( 24.8 \) years to reach a balance of \( \$65,000 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad