Pregunta
upstudy study bank question image url

A person invests \( \$ 8000 \) at \( 4 \% \) interest compounded annually for 3 years and then invests the balance (the \( \$ 8000 \) plus the interest earned) in an account at \( 7 \% \) interest for 10 years. Find the combined value of the investment to the nearest cent after 13 years. (Hint: You need to break this up into two steps/calculations. Be sure to round your balance at the end of the first 3 years to the nearest cent so you can use it in the second set of calculations.)

Ask by Bush Gray. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 13 years, the investment is worth approximately \$17,702.22.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To determine the combined value of the investment after 13 years, we need to break it into two steps. **Step 1:** Calculate the balance after 3 years with the initial investment of \( \$8000 \) at \( 4\% \) interest compounded annually. The formula for compound interest is given by: \[ A = P(1 + r)^t \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested or borrowed for, in years. Here, \( P = 8000 \), \( r = 0.04 \), and \( t = 3 \): \[ A = 8000(1 + 0.04)^3 = 8000(1.124864) \approx 8998.91 \] So, after 3 years, the balance will be approximately \( \$8998.91 \). **Step 2:** The total amount after the first 3 years is then invested in an account at \( 7\% \) interest for another 10 years. Using the same formula: Here, \( P = 8998.91 \), \( r = 0.07 \), and \( t = 10 \): \[ A = 8998.91(1 + 0.07)^{10} = 8998.91(1.967151) \approx 17606.26 \] Thus, after 13 years, the combined value of the investment is approximately \( \$17606.26 \).

preguntas relacionadas

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad