Pregunta
upstudy study bank question image url

Find the balance after 4 years if \( \$ 850 \) is invested at \( 8 \% \) p.a. compounded annually.

Ask by King Daniel. in Australia
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The balance after 4 years is approximately \$1,156.42.

Solución

To find the balance after 4 years when $850 is invested at an annual interest rate of 8% compounded annually, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{100} \right)^n \] where: - \( A \) is the amount after \( n \) years, - \( P \) is the principal amount (initial investment), - \( r \) is the annual interest rate, - \( n \) is the number of years. Given: - \( P = \$850 \), - \( r = 8\% \), - \( n = 4 \) years. Substitute the values into the formula to find the balance after 4 years. Calculate the value by following steps: - step0: Calculate: \(850\left(1+\frac{8}{100}\right)^{4}\) - step1: Reduce the fraction: \(850\left(1+\frac{2}{25}\right)^{4}\) - step2: Add the numbers: \(850\left(\frac{27}{25}\right)^{4}\) - step3: Simplify: \(850\times \frac{27^{4}}{25^{4}}\) - step4: Rewrite the expression: \(25\times 34\times \frac{27^{4}}{25^{4}}\) - step5: Reduce the numbers: \(34\times \frac{27^{4}}{25^{3}}\) - step6: Multiply: \(\frac{34\times 27^{4}}{25^{3}}\) - step7: Simplify: \(\frac{34\times 27^{4}}{15625}\) The balance after 4 years when $850 is invested at an annual interest rate of 8% compounded annually is approximately $1156.42.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the balance after 4 years for an investment of \( \$ 850 \) at an annual compound interest rate of \( 8\% \), we can use the formula for compound interest: \[ A = P(1 + r)^n \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( n \) is the number of years the money is invested or borrowed. In this case: - \( P = 850 \) - \( r = 0.08 \) (which is \( 8\% \) expressed as a decimal) - \( n = 4 \) Substituting the values into the formula gives: \[ A = 850(1 + 0.08)^4 \] Calculating further: \[ A = 850(1.08)^4 \] \[ A = 850 \times 1.36049 \quad (\text{approximately}) \] \[ A \approx 1156.42 \] Therefore, the balance after 4 years will be approximately **$1156.42**. Now, let's sprinkle some fun insights into the investment world! Investing early is like planting a tree—the earlier you plant it, the bigger the shade you'll enjoy later on! Compounding is your best friend, adding those little interest squirrels scampering around to gather more nuts (or dollars) for you each year. And speaking of nuggets, did you know that Albert Einstein famously called compound interest the "eighth wonder of the world"? He believed that those who understand it earn it, and those who don't pay it! So, keep learning about how money can grow and make friends—it's always a worthwhile adventure.

Latest Arithmetic Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad