If you purchase \( \$ 26,000 \) in U.S. Treasury Bills with a discount rate of \( 4.9 \% \) for a period of 26 weeks, what is the effective interest rate (as a \%)? Round to the nearest hundredth percent.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the effective interest rate for U.S. Treasury Bills, we first need to calculate the purchase price using the discount rate. The formula for the purchase price (P) is: \[ P = F \times \left(1 - \left( \frac{r \times t}{360} \right)\right) \] Where: - \( F \) is the face value (which is \( \$ 26,000 \)), - \( r \) is the discount rate (which is \( 4.9\% \) or \( 0.049 \)), - \( t \) is the time in days (for 26 weeks, it's \( 26 \times 7 = 182 \) days). Substituting the values into the formula, we calculate the purchase price: \[ P = 26000 \times (1 - (0.049 \times \frac{182}{360})) \] Calculating \( 0.049 \times \frac{182}{360} \): \[ 0.049 \times 0.50556 \approx 0.0248 \text{ (approximately)} \] Thus, \[ P = 26000 \times (1 - 0.0248) = 26000 \times 0.9752 \approx 25354.40 \] Now, to find the effective interest earned over the 26 weeks, we will do: \[ \text{Interest} = F - P = 26000 - 25354.40 = 645.60 \] Next, to find the effective interest rate, we use the formula: \[ \text{Effective Interest Rate} = \left(\frac{\text{Interest}}{P}\right) \times \left(\frac{360}{t}\right) \times 100 \] Substituting: \[ \text{Effective Interest Rate} = \left(\frac{645.60}{25354.40}\right) \times \left(\frac{360}{182}\right) \times 100 \] Calculating: \[ \frac{645.60}{25354.40} \approx 0.0254, \quad \frac{360}{182} \approx 1.976 \] Hence, \[ \text{Effective Interest Rate} \approx 0.0254 \times 1.976 \times 100 \approx 5.03\% \] Rounding to the nearest hundredth percent, the effective interest rate is \( \boxed{5.03\%} \).
