Pregunta
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The simplified form of the expression \( \frac{9^{x} - 3^{x} - 6}{3^{x} - 3} \) is \( 3^{x} + 2 \), provided that \( x \neq 1 \).
Solución
We start with the expression
(9^x – 3^x – 6) / (3^x – 3).
Step 1. Notice that 9^x = (3^2)^x = 3^(2x). To simplify the expression, let
y = 3^x.
Then we have:
9^x = y^2 and 3^x = y.
Substituting these into the expression gives:
(y^2 – y – 6) / (y – 3).
Step 2. Factor the numerator y^2 – y – 6.
Look for two numbers that multiply to –6 and add to –1. The numbers –3 and 2 work, so:
y^2 – y – 6 = (y – 3)(y + 2).
Step 3. Now the expression becomes:
[(y – 3)(y + 2)] / (y – 3).
Assuming y ≠ 3 (which is equivalent to 3^x ≠ 3, or x ≠ 1), we can cancel the (y – 3) factor:
= y + 2.
Step 4. Substitute back y = 3^x:
= 3^x + 2.
Thus, for x such that 3^x ≠ 3 (or x ≠ 1), the simplified form of the expression is:
3^x + 2.
Note: When x = 1, the denominator 3^1 – 3 becomes 0, so the original expression is undefined at x = 1.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
Let's rewrite the expression in a more manageable form. Notice that \( 9^x = (3^2)^x = (3^x)^2 \). So, let \( y = 3^x \). Then, the expression becomes: \[ \frac{y^2 - y - 6}{y - 3} \] Now, we need to factor the numerator \( y^2 - y - 6 \). This factors into \( (y - 3)(y + 2) \). Thus, our expression simplifies to: \[ \frac{(y - 3)(y + 2)}{y - 3} \] As long as \( y \neq 3 \) (or \( 3^x \neq 3 \)), we can cancel \( y - 3 \): \[ y + 2 \] Substituting back \( y = 3^x \): \[ 3^x + 2 \] So, the simplified form of the expression is \( 3^x + 2 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium