Pregunta
upstudy study bank question image url

The highway mileage ( mpg ) for a sample of 8 different models of a car company can be found belore. Find the mean, median, mode, and standard deviation. Round to one decimal place as needed. \( 20,23,26,28,29,32,33,33 \) Mean \( =\square \) Median \( =\square \) Mode \( =\square \) Standard Deviation \( = \)

Ask by Owen Johnston. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Mean = 28.0 Median = 28.5 Mode = 33 Standard Deviation = 4.8

Solución

We are given the following data: 20, 23, 26, 28, 29, 32, 33, 33. Step 1. Calculate the Mean:  • Sum of the values = 20 + 23 + 26 + 28 + 29 + 32 + 33 + 33 = 224.  • Mean = 224 ÷ 8 = 28.0. Step 2. Find the Median:  • Since there are 8 (an even number) values, the median is the average of the 4th and 5th numbers.  • The sorted list is already: 20, 23, 26, 28, 29, 32, 33, 33.  • The 4th value is 28 and the 5th value is 29.  • Median = (28 + 29) ÷ 2 = 28.5. Step 3. Identify the Mode:  • The mode is the number that appears most frequently.  • Here, 33 appears twice and all other numbers appear only once.  • Mode = 33. Step 4. Compute the Standard Deviation:  • First, calculate each value’s deviation from the mean and then square it (using mean = 28.0):   20: (20 − 28)² = (−8)² = 64   23: (23 − 28)² = (−5)² = 25   26: (26 − 28)² = (−2)² = 4   28: (28 − 28)² = 0² = 0   29: (29 − 28)² = 1² = 1   32: (32 − 28)² = 4² = 16   33: (33 − 28)² = 5² = 25   33: (33 − 28)² = 5² = 25  • Sum of squared deviations = 64 + 25 + 4 + 0 + 1 + 16 + 25 + 25 = 160.  • Since this is a sample of 8 models, use n − 1 (7) for the sample variance:   Sample variance = 160 ÷ 7 ≈ 22.9  • Standard deviation = √(22.9) ≈ 4.8. Final Answers (rounded to one decimal place):  Mean = 28.0  Median = 28.5  Mode = 33  Standard Deviation = 4.8

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

First, let’s find the mean. To get the mean, you add all the values together and then divide by the number of values. Mean = (20 + 23 + 26 + 28 + 29 + 32 + 33 + 33) / 8 = 24.25 / 8 = 27.3 Next, we find the median. Since there are 8 numbers (an even count), the median is the average of the two middle numbers in the ordered list (20, 23, 26, 28, 29, 32, 33, 33): Median = (28 + 29) / 2 = 28.5 For the mode, it's the number that appears most frequently in the dataset, which is 33 since it appears twice. Now for the standard deviation, you first calculate the variance. 1. Calculate the mean as found earlier (27.3). 2. Subtract the mean from each value, square the result, and find the average of those squares: Variance = [(20-27.3)² + (23-27.3)² + (26-27.3)² + (28-27.3)² + (29-27.3)² + (32-27.3)² + (33-27.3)² + (33-27.3)²] / 8 Variance = [53.29 + 18.49 + 1.69 + 0.49 + 2.89 + 21.16 + 31.36 + 31.36] / 8 Variance = 15.98 Finally, the standard deviation is the square root of the variance: Standard Deviation = √15.98 ≈ 4.0 To summarize: Mean = 27.3 Median = 28.5 Mode = 33 Standard Deviation ≈ 4.0

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad