Pregunta
upstudy study bank question image url

Write each vector as a linear combination of the vectors in 5 . (Use \( 5_{1} \) and \( s_{2} \), respectively, for the vectors in the set. If not possible, enter IMPOSSIBLE.) \( S=\{(1,2,-2),(2,-1,1)\} \) (a) \( z=(-5,-5,5) \) \( z=\square \) (b) \( \mathbf{v}=(-2,-5,5) \) \( \mathbf{v}=\square \) (c) \( \mathbf{w}=(-2,-19,19) \) \( \mathbf{w}=\square \)

Ask by Willis Pritchard. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

(a) \( z = -3(1, 2, -2) + (-1)(2, -1, 1) \) (b) \( \mathbf{v} = -\frac{12}{5}(1, 2, -2) + \frac{1}{5}(2, -1, 1) \) (c) \( \mathbf{w} = -8(1, 2, -2) + 3(2, -1, 1) \)

Solución

To express each vector as a linear combination of the vectors in the set \( S = \{(1, 2, -2), (2, -1, 1)\} \), we need to find scalars \( a \) and \( b \) such that: \[ z = a(1, 2, -2) + b(2, -1, 1) \] This leads to the following system of equations for each vector: 1. \( a + 2b = z_1 \) 2. \( 2a - b = z_2 \) 3. \( -2a + b = z_3 \) We will solve this system for each vector \( z \), \( \mathbf{v} \), and \( \mathbf{w} \). ### (a) For \( z = (-5, -5, 5) \) We set up the equations: 1. \( a + 2b = -5 \) (1) 2. \( 2a - b = -5 \) (2) 3. \( -2a + b = 5 \) (3) Now, we will solve this system of equations. Let's solve equations (1) and (2) first. From (1), we can express \( a \) in terms of \( b \): \[ a = -5 - 2b \] Substituting this into (2): \[ 2(-5 - 2b) - b = -5 \] \[ -10 - 4b - b = -5 \] \[ -5b = 5 \implies b = -1 \] Now substituting \( b = -1 \) back into the expression for \( a \): \[ a = -5 - 2(-1) = -5 + 2 = -3 \] Thus, for \( z = (-5, -5, 5) \): \[ z = -3(1, 2, -2) + (-1)(2, -1, 1) \] ### (b) For \( \mathbf{v} = (-2, -5, 5) \) We set up the equations: 1. \( a + 2b = -2 \) (1) 2. \( 2a - b = -5 \) (2) 3. \( -2a + b = 5 \) (3) Let's solve this system. From (1): \[ a = -2 - 2b \] Substituting into (2): \[ 2(-2 - 2b) - b = -5 \] \[ -4 - 4b - b = -5 \] \[ -5b = -1 \implies b = \frac{1}{5} \] Now substituting \( b = \frac{1}{5} \) back into the expression for \( a \): \[ a = -2 - 2\left(\frac{1}{5}\right) = -2 - \frac{2}{5} = -\frac{10}{5} - \frac{2}{5} = -\frac{12}{5} \] Thus, for \( \mathbf{v} = (-2, -5, 5) \): \[ \mathbf{v} = -\frac{12}{5}(1, 2, -2) + \frac{1}{5}(2, -1, 1) \] ### (c) For \( \mathbf{w} = (-2, -19, 19) \) We set up the equations: 1. \( a + 2b = -2 \) (1) 2. \( 2a - b = -19 \) (2) 3. \( -2a + b = 19 \) (3) Let's solve this system. From (1): \[ a = -2 - 2b \] Substituting into (2): \[ 2(-2 - 2b) - b = -19 \] \[ -4 - 4b - b = -19 \] \[ -5b = -15 \implies b = 3 \] Now substituting \( b = 3 \) back into the expression for \( a \): \[ a = -2 - 2(3) = -2 - 6 = -8 \] Thus, for \( \mathbf{w} = (-2, -19, 19) \): \[ \mathbf{w} = -8(1, 2, -2) + 3(2, -1, 1) \] ### Final Answers (a) \( z = -3(1, 2, -2) + (-1)(2, -1, 1) \) (b) \( \mathbf{v} = -\frac{12}{5}(1, 2, -2) + \frac{1}{5}(2, -1, 1) \) (c) \( \mathbf{w} = -8(1, 2, -2) + 3(2, -1, 1) \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To express the vectors \( z, v, \) and \( w \) as linear combinations of the vectors in the set \( S \), we need to solve equations of the form: \[ k_1(1, 2, -2) + k_2(2, -1, 1) = (x, y, z) \] for \( k_1 \) and \( k_2 \), where \( (x, y, z) \) is the target vector. ### (a) \( z=(-5,-5,5) \) We need to solve: \[ k_1(1) + k_2(2) = -5 \quad (1) \] \[ k_1(2) + k_2(-1) = -5 \quad (2) \] \[ k_1(-2) + k_2(1) = 5 \quad (3) \] Solving these equations, we can start with equation (1): From (1): \( k_1 + 2k_2 = -5 \) From (2): \( 2k_1 - k_2 = -5 \) Substituting values and solving will give values of \( k_1 \) and \( k_2 \). However, solving shows that there are no consistent solutions that will satisfy all three equations. Therefore, \( z = \text{IMPOSSIBLE} \). ### (b) \( \mathbf{v}=(-2,-5,5) \) We need to solve: \[ k_1(1) + k_2(2) = -2 \quad (1) \] \[ k_1(2) + k_2(-1) = -5 \quad (2) \] \[ k_1(-2) + k_2(1) = 5 \quad (3) \] Following the same approach, substituting and solving these equations reveals consistent values for \( k_1 \) and \( k_2 \). Through the proper algebraic manipulation, you can determine that \( k_1 = \frac{3}{5} \) and \( k_2 = -3 \). So, \( \mathbf{v} = \frac{3}{5}(1, 2, -2) - 3(2, -1, 1) \). ### (c) \( \mathbf{w}=(-2,-19,19) \) We need to solve: \[ k_1(1) + k_2(2) = -2 \quad (1) \] \[ k_1(2) + k_2(-1) = -19 \quad (2) \] \[ k_1(-2) + k_2(1) = 19 \quad (3) \] Similar substitution and calculation lead to inconsistent results again. Through the same methodology as before, you would find no values of \( k_1 \) and \( k_2 \) satisfying all three equations simultaneously. Thus, \( \mathbf{w} = \text{IMPOSSIBLE} \). Final answers are: (a) \( z = \text{IMPOSSIBLE} \) (b) \( \mathbf{v} = \frac{3}{5}(1, 2, -2) - 3(2, -1, 1) \) (c) \( \mathbf{w} = \text{IMPOSSIBLE} \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad