Pregunta
3. [-/0.83 Points] DETAILS MY NOTES SCALCET9 2.XP.6.008. Find the limit. (If the limit is infinite, enter ' \( \infty \) ' or '- \( \infty \) ', as appropriate. If the limit does not otherwise exist, enter DNE.) \( \lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+9}} \)
Ask by Johnston Carrillo. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The limit is 1.
Solución
Calculate the limit \( \lim_{x\rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+9}} \).
Evaluate the limit by following steps:
- step0: Evaluate using transformations:
\(\lim _{x\rightarrow +\infty}\left(\frac{x^{2}}{\sqrt{x^{4}+9}}\right)\)
- step1: Rewrite the expression:
\(\lim _{x\rightarrow +\infty}\left(\frac{x^{2}}{\sqrt{1+\frac{9}{x^{4}}}\times x^{2}}\right)\)
- step2: Reduce the fraction:
\(\lim _{x\rightarrow +\infty}\left(\frac{1}{\sqrt{1+\frac{9}{x^{4}}}}\right)\)
- step3: Rewrite the expression:
\(\frac{\lim _{x\rightarrow +\infty}\left(1\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{9}{x^{4}}}\right)}\)
- step4: Calculate:
\(\frac{1}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{9}{x^{4}}}\right)}\)
- step5: Calculate:
\(\frac{1}{1}\)
- step6: Divide the terms:
\(1\)
The limit of \( \frac{x^{2}}{\sqrt{x^{4}+9}} \) as \( x \) approaches infinity is 1.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
To solve the limit \( \lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+9}} \), we start by analyzing the expression. Notice that as \( x \) approaches infinity, the term \( x^{4} \) inside the square root dominates the 9. Thus, we can simplify the limit: \[ \lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}+9}} \approx \lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x^{4}}} = \lim _{x \rightarrow \infty} \frac{x^{2}}{x^{2}} = 1. \] So the limit is equal to 1. The answer is \( 1 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium