Pregunta
Score: \( 2 \pi \) Penalty: none Question If \( C=x^{2}+7 x+5 \) and \( D=x^{2}-8 \), find an expression that equals \( 3 C-2 D \) in standard form. Answer Attempt 1 out of 2 Whow Examples Video Submit Answer
Ask by Dawson Li. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The expression \( 3C - 2D \) in standard form is \( x^{2} + 21x + 31 \).
Solución
Simplify the expression by following steps:
- step0: Rearrange the terms:
\(2\left(x^{2}-8\right)\)
- step1: Rearrange the terms:
\(2x^{2}-16\)
Expand the expression \( 3*(x^{2}+7*x+5) \)
Simplify the expression by following steps:
- step0: Rearrange the terms:
\(3\left(x^{2}+7x+5\right)\)
- step1: Rearrange the terms:
\(3x^{2}+21x+15\)
Expand the expression \( 3x^{2}+21x+15-(2x^{2}-16) \)
Simplify the expression by following steps:
- step0: Calculate:
\(3x^{2}+21x+15-\left(2x^{2}-16\right)\)
- step1: Remove the parentheses:
\(3x^{2}+21x+15-2x^{2}+16\)
- step2: Subtract the terms:
\(x^{2}+21x+31\)
To find the expression that equals \( 3C - 2D \) in standard form, we start with the given expressions for \( C \) and \( D \):
1. **Given:**
- \( C = x^{2} + 7x + 5 \)
- \( D = x^{2} - 8 \)
2. **Calculate \( 3C \):**
\[
3C = 3(x^{2} + 7x + 5) = 3x^{2} + 21x + 15
\]
3. **Calculate \( 2D \):**
\[
2D = 2(x^{2} - 8) = 2x^{2} - 16
\]
4. **Now, substitute these into the expression \( 3C - 2D \):**
\[
3C - 2D = (3x^{2} + 21x + 15) - (2x^{2} - 16)
\]
5. **Simplify the expression:**
\[
3C - 2D = 3x^{2} + 21x + 15 - 2x^{2} + 16
\]
\[
= (3x^{2} - 2x^{2}) + 21x + (15 + 16)
\]
\[
= x^{2} + 21x + 31
\]
Thus, the expression that equals \( 3C - 2D \) in standard form is:
\[
\boxed{x^{2} + 21x + 31}
\]
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To find the expression that equals \( 3C - 2D \), first substitute \( C \) and \( D \) into the equation: \[ C = x^2 + 7x + 5 \] \[ D = x^2 - 8 \] Now compute \( 3C \) and \( -2D \): \[ 3C = 3(x^2 + 7x + 5) = 3x^2 + 21x + 15 \] \[ -2D = -2(x^2 - 8) = -2x^2 + 16 \] Now combine these results: \[ 3C - 2D = (3x^2 + 21x + 15) + (-2x^2 + 16) \] Combine like terms: \[ 3x^2 - 2x^2 + 21x + 15 + 16 = x^2 + 21x + 31 \] So, the expression in standard form is: \[ x^2 + 21x + 31 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium