Pregunta
upstudy study bank question image url

"In the right-angled triangle \( A B C \), one of the acute angles is three times the other. If the length of the altitude to the hypotenuse is 2 , what is the length of the hypotenuse?"

Ask by Rodriguez Weber. in Iran
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The length of the hypotenuse is \( 2\sqrt{2} \).

Solución

To solve the problem, we start by defining the angles in the right-angled triangle \( ABC \). 1. **Define the angles:** Let the smaller acute angle be \( \theta \). Then, the other acute angle, which is three times the smaller angle, will be \( 3\theta \). Since the sum of angles in a triangle is \( 180^\circ \) and one angle is \( 90^\circ \), we have: \[ \theta + 3\theta + 90^\circ = 180^\circ \] Simplifying this gives: \[ 4\theta = 90^\circ \implies \theta = 22.5^\circ \] Therefore, the angles in the triangle are \( 22.5^\circ \), \( 67.5^\circ \), and \( 90^\circ \). 2. **Use the altitude to the hypotenuse:** The altitude to the hypotenuse is given as \( h = 2 \). In a right triangle, the area can be expressed in two ways: - Using the base and height (hypotenuse as the base): \[ \text{Area} = \frac{1}{2} \times \text{hypotenuse} \times h \] - Using the two legs: \[ \text{Area} = \frac{1}{2} \times a \times b \] where \( a \) and \( b \) are the lengths of the legs. 3. **Relate the altitude to the hypotenuse:** The area can also be expressed in terms of the hypotenuse \( c \) and the altitude \( h \): \[ \text{Area} = \frac{1}{2} \times c \times h \] Setting the two area expressions equal gives: \[ \frac{1}{2} \times c \times 2 = \frac{1}{2} \times a \times b \] Simplifying this, we find: \[ c = a \times b \] 4. **Use trigonometric relationships:** In triangle \( ABC \): - The side opposite \( \theta \) is \( a = c \sin(22.5^\circ) \) - The side opposite \( 3\theta \) is \( b = c \sin(67.5^\circ) \) Using the sine values: \[ \sin(22.5^\circ) = \frac{\sqrt{2 - \sqrt{2}}}{2}, \quad \sin(67.5^\circ) = \sin(90^\circ - 22.5^\circ) = \cos(22.5^\circ) = \frac{\sqrt{2 + \sqrt{2}}}{2} \] 5. **Substituting into the area equation:** We can express \( c \) in terms of \( a \) and \( b \): \[ c = c \sin(22.5^\circ) \cdot c \sin(67.5^\circ \] This simplifies to: \[ c = c^2 \cdot \frac{\sqrt{2 - \sqrt{2}}}{2} \cdot \frac{\sqrt{2 + \sqrt{2}}}{2} \] Thus: \[ 1 = c \cdot \frac{\sqrt{(2 - \sqrt{2})(2 + \sqrt{2})}}{4} \] Simplifying the square root: \[ (2 - \sqrt{2})(2 + \sqrt{2}) = 4 - 2 = 2 \] Therefore: \[ 1 = c \cdot \frac{\sqrt{2}}{4} \implies c = \frac{4}{\sqrt{2}} = 2\sqrt{2} \] 6. **Final answer:** The length of the hypotenuse \( c \) is: \[ \boxed{2\sqrt{2}} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's denote the acute angles of triangle \( ABC \) as \( \theta \) and \( 3\theta \). Since the angles in a triangle add up to \( 180^\circ \) and one angle is \( 90^\circ \), we have: \[ \theta + 3\theta + 90^\circ = 180^\circ \] This simplifies to: \[ 4\theta = 90^\circ \implies \theta = 22.5^\circ \] Thus, the angles are \( 22.5^\circ \) and \( 67.5^\circ \). Let \( h \) be the hypotenuse of triangle \( ABC \). The area \( A \) of triangle \( ABC \) can be expressed in two ways: using the altitude to the hypotenuse and using the sine of the angles. The area can be calculated as: \[ A = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times h \times 2 = h \] Using the sine formula for area, we have: \[ A = \frac{1}{2} \times a \times b \times \sin(90^\circ) = \frac{1}{2} \times a \times b \] But we can also express this in terms of the angles. The area can also be calculated with the altitude formula: \[ A = \frac{1}{2} \times h \times \text{altitude to hypotenuse} = \frac{1}{2} \times h \times 2 = h \] By the property of right triangles, we know that the height from the right angle to the hypotenuse can also be expressed as: \[ h = \frac{a \cdot b}{h} \] Using \( h \) as the height corresponding to the hypotenuse, we will use the fact that in any right triangle: \[ \text{Altitude} = \frac{ab}{h} \] Given that the altitude is \( 2 \): \[ 2 = \frac{ab}{h} \implies ab = 2h \] Now applying the relation between the sides: \[ h = ab \cdot \frac{1}{2} \implies h = 2 \] So, we find values of \( a \) and \( b \) using the angles \( \theta \) and \( 3\theta \): \[ a = h \sin(22.5^\circ), \quad b = h \sin(67.5^\circ) \] Now solving: We know \( \sin(67.5^\circ) = \cos(22.5^\circ) \). Using the angle properties and the known \( h \): Hence, with \( ab = 2h \) substituting the known values yields: Finally, simplifying we can derive that the hypotenuse \( h \) values yields when calculations and properties of heights and bases are utilized together. Therefore, the length of the hypotenuse in this case will be \( h = 4 \).

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad