Pregunta
upstudy study bank question image url

A bag contains 2 blue marbles, 6 red marbles, and 2 yellow marbles. The probability of drawing a blue marble out of the bag is \( \frac{2}{10} \) or \( 20 \% \). How many of what color of marbles must be added to the bag so that the probability of a blue marble being drawn at random from the bag is \( 90 \% \) ? Select the correct answer below and fill in the answer box within your choice. (Type a whole number.) A. There must be \( \square \) yellow marbles added to the bag. B. There must be \( \square \) red marbles added to the bag. C. There must be \( \square \) blue marbles added to the bag.

Ask by Gray Ramirez. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

To achieve a 90% probability of drawing a blue marble, 70 blue marbles must be added to the bag.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

Bonus Knowledge

To make the probability of drawing a blue marble \( 90\% \), we can set up the equation based on the total number of marbles. There are currently \( 2 + 6 + 2 = 10 \) marbles in total. Let \( x \) be the number of blue marbles added. The new total number of marbles will be \( 10 + x \), and the number of blue marbles will be \( 2 + x \). Setting up the equation for the probability: \[ \frac{2 + x}{10 + x} = 0.9 \] Cross-multiplying, we get: \[ 2 + x = 0.9(10 + x) \] This simplifies to: \[ 2 + x = 9 + 0.9x \] Rearranging terms brings us to: \[ 2 - 9 = 0.9x - x \] \[ -7 = -0.1x \implies x = 70 \] Thus, the correct answer is C. There must be \( 70 \) blue marbles added to the bag. But wait! Here’s a fun fact: Did you know that the concept of probability dates back to the 16th century with mathematicians like Gerolamo Cardano? He famously explored the mathematics of games of chance! And did you know there’s a famous gambler’s fallacy? Some people believe if a particular outcome occurs multiple times in a row (like drawing only red marbles), it’s less likely to happen again soon when in reality, each draw is independent. So don't let superstition influence your calculations!

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad