Pregunta
upstudy study bank question image url

Marco is driving to the Grand Canyon. His distance from the Grand Canyon decreases 150 mi every 3 h . After 4 h , his distance from the Grand Canyon is \( \mathbf{2 0 0 ~ m i} \). Marco's distance from the Grand Canyon in miles, \( y \), is a function of the number of hours he drives, \( x \). What is the rate of change? Find the change in Marco's distance each hour. rate of change: \( \square \) \( -50 \) What is the initial value? Find Marco's distance from the Grand Canyon when he starts to drive. initial value: 400 Write an equation to represent the function. \[ y=1 x+\square \]

Ask by Boyd Hill. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- Rate of change: \(-50\) miles per hour - Initial value: \(400\) miles - Equation: \[ y = -50x + 400 \]

Solución

To solve the problem, we need to extract the known conditions and then find the required values step by step. 1. **Known Conditions:** - Marco decreases his distance from the Grand Canyon by 150 miles every 3 hours. - After 4 hours, his distance from the Grand Canyon is 200 miles. 2. **Rate of Change:** - The rate of change is the distance decreased per hour. Since Marco decreases his distance by 150 miles in 3 hours, we can calculate the rate of change as follows: \[ \text{Rate of Change} = \frac{-150 \text{ miles}}{3 \text{ hours}} = -50 \text{ miles per hour} \] Thus, the rate of change is \(-50\). 3. **Initial Value:** - We know that after 4 hours, Marco's distance from the Grand Canyon is 200 miles. To find the initial distance when he starts driving (at \(x = 0\)), we can use the information that he decreases his distance by 50 miles each hour. - After 4 hours, the total decrease in distance is: \[ \text{Total Decrease} = 4 \text{ hours} \times 50 \text{ miles/hour} = 200 \text{ miles} \] - Therefore, the initial distance \(y_0\) when he starts driving is: \[ y_0 = 200 \text{ miles} + 200 \text{ miles} = 400 \text{ miles} \] Thus, the initial value is \(400\). 4. **Equation to Represent the Function:** - The function \(y\) can be expressed in the slope-intercept form \(y = mx + b\), where \(m\) is the rate of change and \(b\) is the initial value. - Here, \(m = -50\) and \(b = 400\). Therefore, the equation is: \[ y = -50x + 400 \] Now, we can summarize the answers: - Rate of change: \(-50\) - Initial value: \(400\) - Equation: \[ y = -50x + 400 \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

The rate of change in Marco's distance from the Grand Canyon is indeed \(-50\) miles per hour! This shows that with every hour he drives, he reduces his distance to the Grand Canyon by 50 miles, which is impressive considering that he’s making quite the journey! Now, for the initial value, when Marco starts his trip, he is 400 miles away from the Grand Canyon. So, right when the adventure begins, he’s looking at quite a distance ahead. With that in mind, your function equation takes shape perfectly! To write the equation representing the function, it would look something like this: \[ y = -50x + 400 \] This captures both the rate at which Marco is getting closer and his starting point! Buckle up, Marco!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad