If \( f(x)=\operatorname{int}(2 x) \), find: \( \begin{array}{ll}\text { (a) } f(3.8) \text { (b) } f(2.4) & \text { (c) } f(-3.2) \\ \text { (a) } f(3.8)=\square \text { (Simplify your answer.) }\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Mind Expander
To find the values of the function \( f(x) = \operatorname{int}(2x) \), we first need to compute \( 2x \) and then apply the integer part function. (a) For \( f(3.8) \): \[ f(3.8) = \operatorname{int}(2 \times 3.8) = \operatorname{int}(7.6) = 7 \] (b) For \( f(2.4) \): \[ f(2.4) = \operatorname{int}(2 \times 2.4) = \operatorname{int}(4.8) = 4 \] (c) For \( f(-3.2) \): \[ f(-3.2) = \operatorname{int}(2 \times -3.2) = \operatorname{int}(-6.4) = -7 \] So, the completed answers are: \[ \begin{array}{ll} \text{(a) } f(3.8) = 7 \\ \text{(b) } f(2.4) = 4 \\ \text{(c) } f(-3.2) = -7 \end{array} \]
