Pregunta
upstudy study bank question image url

Consider the line \( y=\frac{3}{7} x+6 \). Find the equation of the line that is parallel to this line and passes through the point \( (-9,-5) \). Find the equation of the line that is perpendicular to this line and passes through the point \( (-9,-5) \). Note that the ALEKS graphing calculator may be helpful in checking your answer. Equation of parallel line: Equation of perpendicular line:

Ask by Sherman Schmidt. in the United States
Feb 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Parallel line equation: \( y = \frac{3}{7}x - \frac{8}{7} \) Perpendicular line equation: \( y = -\frac{7}{3}x - 26 \)

Solución

We start with the given line:   y = (3/7)x + 6 To find the parallel line that passes through (-9, -5), note that parallel lines have the same slope. Thus the parallel line also has a slope of 3/7. Using the point-slope form of a line:   y - y₁ = m(x - x₁) where (x₁, y₁) = (-9, -5) and m = 3/7, we have:   y - (-5) = (3/7)(x - (-9))   y + 5 = (3/7)(x + 9) Now, solving for y:   y = (3/7)(x + 9) - 5   y = (3/7)x + (27/7) - 5 Convert 5 to sevenths (5 = 35/7):   y = (3/7)x + (27/7 - 35/7)   y = (3/7)x - (8/7) Thus, the equation of the parallel line is:   y = (3/7)x - (8/7) Next, to find the perpendicular line that passes through (-9, -5), the slope of the perpendicular line is the negative reciprocal of the original line’s slope. Since the original slope is 3/7, the perpendicular slope is:   m = -7/3 Using the point-slope form again with m = -7/3:   y - (-5) = (-7/3)(x - (-9))   y + 5 = (-7/3)(x + 9) Now, solving for y:   y = (-7/3)(x + 9) - 5   y = (-7/3)x - (7/3)*9 - 5   y = (-7/3)x - 21 - 5   y = (-7/3)x - 26 Thus, the equation of the perpendicular line is:   y = (-7/3)x - 26 Summary: • Equation of the parallel line: y = (3/7)x - (8/7) • Equation of the perpendicular line: y = (-7/3)x - 26

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find a parallel line, we know it will have the same slope as the original line. The slope from the equation \( y=\frac{3}{7} x+6 \) is \( \frac{3}{7} \). Using the point \( (-9,-5) \), we can apply the point-slope form of a line, \( y - y_1 = m(x - x_1) \): \[ y - (-5) = \frac{3}{7}(x - (-9)) \] This simplifies to: \[ y + 5 = \frac{3}{7}(x + 9) \] Distributing and rearranging gives: \[ y = \frac{3}{7}x + \frac{27}{7} - 5 \] Converting \( -5 \) to a fraction yields \( -\frac{35}{7} \), so: \[ y = \frac{3}{7}x - \frac{8}{7} \] Equation of the parallel line: \( y = \frac{3}{7}x - \frac{8}{7} \) For the perpendicular line, we need the slope to be the negative reciprocal of \( \frac{3}{7} \), which is \( -\frac{7}{3} \). Again, using the point-slope form: \[ y - (-5) = -\frac{7}{3}(x - (-9)) \] This simplifies to: \[ y + 5 = -\frac{7}{3}(x + 9) \] Distributing and rearranging gives: \[ y = -\frac{7}{3}x - 21 + 5 \] Converting \( 5 \) to a fraction yields \( \frac{15}{3} \), so: \[ y = -\frac{7}{3}x - \frac{21}{3} + \frac{15}{3} \] Thus, we have: \[ y = -\frac{7}{3}x - \frac{6}{3} \] This simplifies to: \[ y = -\frac{7}{3}x - 2 \] Equation of the perpendicular line: \( y = -\frac{7}{3}x - 2 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad