Pregunta
upstudy study bank question image url

Follow the seven step strategy to graph the following rational function. \[ f(x)=\frac{4 x^{2}}{x^{2}-4} \] A. The equation(s) of the vertical asymptote(s) is/are \( x=2, x=-2 \). (Type an equation. Use a comma to separate answers as needed.) B. There is no vertical asymptote. Find the horizontal asymptote(s). Type the equation(s) of the horizontal asymptote(s). Select the correct choice below and fill in any answer boxes within your choice. A. The equation(s) of the horizontal asymptote(s) is/are \( y=4 \). (Type an equation. Use a comma to separate answers as needed.) B. There is no horizontal asymptote. Plot points between and beyond each \( x \)-intercept and vertical asymptote. Find the value of the function at the given value of \( x \). \[ \begin{array}{lllllll} \mathrm{x} & -4 & -3 & -\frac{1}{2} & \frac{1}{2} & 3 & 4 \\ \mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}^{2}}{\mathrm{x}^{2}-4} & \square & \square & \square & \square & \square & \square \end{array} \] (Simplify your answers.)

Ask by Ayala Mejia. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Vertical asymptotes at \( x = 2 \) and \( x = -2 \), horizontal asymptote at \( y = 4 \). Function values at specified \( x \)-values are \( \frac{16}{3} \), \( \frac{36}{5} \), \( -\frac{4}{15} \), \( -\frac{4}{15} \), \( \frac{36}{5} \), and \( \frac{16}{3} \).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

Let's break down the steps needed to analyze the given rational function \( f(x) = \frac{4x^2}{x^2 - 4} \). First, we’ll answer the vertical asymptote section. A. The equation(s) of the vertical asymptote(s) is/are \( x=2, x=-2 \). Now, moving on to the horizontal asymptote: A. The equation(s) of the horizontal asymptote(s) is/are \( y=4 \). Next, we need to calculate the function values at specific \( x \)-points: 1. When \( x = -4 \): \[ f(-4) = \frac{4(-4)^2}{(-4)^2 - 4} = \frac{64}{16 - 4} = \frac{64}{12} = \frac{16}{3} \] 2. When \( x = -3 \): \[ f(-3) = \frac{4(-3)^2}{(-3)^2 - 4} = \frac{36}{9 - 4} = \frac{36}{5} \] 3. When \( x = -\frac{1}{2} \): \[ f\left(-\frac{1}{2}\right) = \frac{4 \left(-\frac{1}{2}\right)^2}{\left(-\frac{1}{2}\right)^2 - 4} = \frac{4 \cdot \frac{1}{4}}{\frac{1}{4} - 4} = \frac{1}{\frac{1}{4} - \frac{16}{4}} = \frac{1}{-\frac{15}{4}} = -\frac{4}{15} \] 4. When \( x = \frac{1}{2} \): \[ f\left(\frac{1}{2}\right) = \frac{4 \left(\frac{1}{2}\right)^2}{\left(\frac{1}{2}\right)^2 - 4} = \frac{4 \cdot \frac{1}{4}}{\frac{1}{4} - 4} = \frac{1}{\frac{1}{4} - \frac{16}{4}} = \frac{1}{-\frac{15}{4}} = -\frac{4}{15} \] 5. When \( x = 3 \): \[ f(3) = \frac{4(3)^2}{(3)^2 - 4} = \frac{36}{9 - 4} = \frac{36}{5} \] 6. When \( x = 4 \): \[ f(4) = \frac{4(4)^2}{(4)^2 - 4} = \frac{64}{16 - 4} = \frac{64}{12} = \frac{16}{3} \] Now, we compile the function values: \[ \begin{array}{lllllll} \mathrm{x} & -4 & -3 & -\frac{1}{2} & \frac{1}{2} & 3 & 4 \\ \mathrm{f}(\mathrm{x}) & \frac{16}{3} & \frac{36}{5} & -\frac{4}{15} & -\frac{4}{15} & \frac{36}{5} & \frac{16}{3} \end{array} \] This table contains the function values at each specified \( x \) point, arranged for plotting purposes.

preguntas relacionadas

Latest Pre Calculus Questions

1.3.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.4 CASE 3: \( r=1 \) 1.4.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=1 \text { ? } \] 1.4.2 Make a conjecture with regard to \( r^{n} \) and \( S_{n} \) as \( n \rightarrow \infty \) (2) 1.5 CASE 4: \( r=-1 \) 1.5.1 What is the sum of the geometric series \[ S_{n}=a+a r+a r^{2}+\ldots a r^{n-1} \text { if } r=-1 ? \] 1.5.2 Do the sums above approach some finite particular number as \( n \rightarrow \infty \) i.e. is the sequence divergent or convergent? 1.6 CASE 5: \( -1<r<1 \) REQUIREMENTS: - One A4 papers - Provided grid 1.6.1 Write THREE possible values of \( r \) such that \( -1<r<1 \). 1.6.2 Step 1. Cut the A4 size paper along the longest side into two equal Rectangles and define their areas to be 16 unit \( ^{2} \). 1.6.3 Step 2. Place one half of the rectangle in Step 1 on the desktop and cut the other half along the longest side in to two equal rectangles. 1.6.4 Step 3. Place one half of the rectangle in Step 2 on the desktop and cut the other half along the longest side into two equal rectangles. 1.6.5 Step 4. Continue with the procedures from Step 3 until you find it too difficult to fold and cut the piece of paper you are holding. 1.6.6 Step 5. The first piece of paper you placed on the desktop has an area of \( \frac{1}{2} \) the area of the A4. The second piece of paper has an area of \( \frac{1}{4} \) the area of the A4. Write the areas of the next three pieces of paper. 1.6.7 Explain why these areas form a geometric seauence
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad