area of a rectangle is \( 66 \mathrm{~m}^{2} \), and the length of the rectangle is 1 m more than double the width. Find the dimensions of the rectangle. Length : \( \square \mathrm{m} \) Width : \( \square \mathrm{m} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
To find the dimensions of the rectangle, we can set up the equation based on the information provided. Let the width be \( w \) meters. According to the problem, the length \( l \) can be expressed as \( l = 2w + 1 \). The area \( A \) of a rectangle is given by the formula \( A = l \times w \). Given that the area is \( 66 \mathrm{~m}^{2} \), we can write: \[ 66 = (2w + 1) \times w \] Expanding this gives us: \[ 66 = 2w^2 + w \] Rearranging the equation, we get: \[ 2w^2 + w - 66 = 0 \] This is a quadratic equation that we can solve using the quadratic formula \( w = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \). Here, \( a = 2, b = 1, c = -66 \). Calculating the discriminant: \[ b^2 - 4ac = 1^2 - 4 \times 2 \times (-66) = 1 + 528 = 529 \] Now, applying the quadratic formula: \[ w = \frac{-1 \pm \sqrt{529}}{4} \] Since \( \sqrt{529} = 23 \), we have: \[ w = \frac{-1 \pm 23}{4} \] Taking the positive root: \[ w = \frac{22}{4} = 5.5 \text{ m} \] Now substituting back to find the length: \[ l = 2(5.5) + 1 = 11 + 1 = 12 \text{ m} \] So the dimensions of the rectangle are: Length: \( 12 \mathrm{~m} \) Width: \( 5.5 \mathrm{~m} \)
